明星大学理工学研究科

博士学位論文

Application of NMR techniques to identify compounds with binding affinity to macromolecules

第1部:低分子化合物の構造解析

第2部:分子間相互作用解析

第3部:多変量解析

佐久間 千勢子

目次

諸言		5
第1部	:低分子化合物の構造解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
第1章	N-アセチルスクロサミンからの酵素反応による新規オリゴ糖の構造解析	
1 - 1	序論	6
1 - 2	実験方法	6
1-3	結果および考察	6
1-4	結論	17
第2部	:分子間相互作用解析 •••••••	18
第1章	酵母β-フルクトフラノシダーゼとN-アセチルスクロサミンの分子間相互作用の	解析
1 - 1	序論	18
1 - 2	実験方法	19
1-3	結果および考察	21
1-4	結論	28
第2章	α-シヌクレイン重合化におけるドパミンとの相互作用解析	
2-1	序論	29
2-2	実験方法	30
2-3	結果および考察	33
2-4	結論	39
第3章	フッ素化合物ジフルニサルーヒト血清アルブミンの相互作用解析	
3-1	序論	40
3-2	実験方法	40
3-3	結果および考察	42
3-4	結論	45
第3部	:多変量解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
第1章	NMR 法による紅茶の成分分析	
1-1	序論	46

2

実験方法								49
結果および考察								51
結論								59
		•	•	•	•	•	•	60
禄・研究業績	•••	•	•	•	•	•	•	60 65
	実験方法 結果および考察 結論							

略語表

NMR	Nuclear Magnetic Resonance:核磁気共鳴
HSQC	Heteronuclear Single Quantum Coherence
HMBC	Heteronuclear Multiple Bond Coherence
TLC	Thin Layer Chromatography:薄層クロマトグラフィー
STD	Saturation Transfer Difference
DQFCOSY	Double Quantum Filtered COrrelated SpectroscopY
TOCSY	TOtal Correlated SpectroscopY
NOESY	Nuclear Overhauser Enhancement SpectroscopY
FAB-MS	Fast Atom Bombardment Mass Spectrometry
PD	Parkinson's Disease: パーキンソン病
WT	Wild Type : 野生型
A30P	30 番目のアミノ酸残基をアラニンからプロリンに置換した変異体
A53T	53 番目のアミノ酸残基をアラニンからスレオニンに置換した変異体
E46K	46 番目のアミノ酸残基をグルタミン酸からリシンに置換した変異体
Mw	Molecular weight:分子量
IPTG	Isopropyl-β-D-(-)-Thiogalactopyranoside
OD ₆₀₀	Optical Density 600:600 nm における濁度
SDS-PAGE	SDS-polyacrylamide gel electrophoresis:SDS ポリアクリルアミドゲル電気泳動
LOGSY	Ligand Observed via Gradient SpectroscopY
ESI-TOF-MS	ElectroSpray Ionization Time-Of-Flight Mass Spectrometry
PCA	Principal Component Analysis:主成分分析
PLS-DA	Partial Least-Squares Discriminate Analysis:部分最小二乗判別法

諸言

核磁気共鳴法(MMR)は試料の状態により、溶液 NMR および固体 NMR と大別され、両 分野においてハードおよび測定法などのソフト面の両方において、最近の進歩はめざましい。 ハード面では超伝導磁石の大型化による高磁場化、極低温プローブによる高感度が挙げられ る。高磁場化では、現在、1000 MHz (1 GHz)までの NMR 装置が市販されている。極低温プ ローブは、プレアンプおよびプローブ中のコイルを液体ヘリウムで冷却することにより、熱 由来のノイズを抑制する。その結果、高感度なスペクトル測定が可能になる。

測定法においては、多次元 NMR 測定による生体高分子物質の解析が可能になり、拡散係 数の測定による混合物の解析が可能になった。NMR では、精製された試料を対象にするこ とが通常であったが、混合物中の各分子の体積が異なれば、拡散係数が異なることより、 DOSY (Diffusion Ordered SpectroscopY) 測定より、スペクトル中での分子の分離が可能になっ た。また、薬剤スクリーニング系への応用も報告されている。レセプター(タンパク質など) に親和性をもつ低分子化合物(リガンド)を選択的に検出する手法であり、製薬会社を中心 に盛んに行われている。この方法では、タンパク質側での検出、リガンド側での検出などの 2 つの方法に大別される。

「第1部:低分子化合物の構造解析」では、N-アセチルスクロサミンからの酵素反応による 新規オリゴ糖の3糖および4糖の構造解析をNMRにより行った。糖は大部分の¹Hの化学シ フト範囲が3-4 ppmと大変狭く、そのため、糖の増加に伴い、シグナルの重なりが激しくな り、帰属が大変困難になる。本研究では、4級炭素の分離が最も良い温度での、2D HSQC, HMBC, HSQC-TOCSY などの解析により、¹H/¹³C の完全帰属を行った。

「第2部:分子間相互作用解析」は3章からなり、「第1章:酵母β-フルクトフラノシダー ゼと N-アセチルスクロサミンの分子間相互作用の解析」では、タンパク質-リガンドの分子 間相互作用解析を NMR および等温滴定カロリーメトリーで行った結果について記述する。 また、スクロースの加水分解過程を¹H NMR スペクトルで経時的にモニターし、酵母β-フル クトフラノシダーゼと N-アセチルスクロサミンの分子間相互作用を示唆する結果を得た。 「第2章: α-シヌクレイン重合化におけるドパミンとの相互作用解析」では、α-シヌクレイン とドパミンの分子間相互作用を NMR により解析し、複合体形成をエレクトロスプレーイオ ン化質量分析により検出した。ここで得られた研究成果は、NMR による生体物質の構造解 析および溶液中における分子の挙動解析手法の発展に貢献し得るものと期待される。「第3 章:フッ素化合物ジフルニサルーヒト血清アルブミンの相互作用解析」では、既存の NMR 装置では測定不可能な¹H-¹⁹F 相関スペクトルの測定を、新たに高周波チャンネルを増設する ことなく、プログラム変更により可能にし、タンパク質とフッ素化合物の分子間相互作用の 解析を¹⁹F 検出により行った。「第3部:多変量解析」では、NMR 法による紅茶の成分分析 を多変量解析の手法を用いてスリランカの標高の異なる4カ所で栽培・製造された紅茶葉に て行い、食品分析の観点から本法の有用性を実証した。 第1部:低分子化合物の構造解析

第1章 N-アセチルスクロサミンからの酵素反応による新規オリゴ糖の構造解析

1-1 序論

第2部:第1章において、N-アセチルアミノ糖を含むヘテロオリゴ糖である N-アセチルス クロサミン (SucNAc) に関して、加水分解酵素であるインベルターゼとの相互作用解析に ついて述べる。本章では、SucNAc をベースに糖鎖長が更に長くなった、GlcNAc を含む新規 ヘテロオリゴ糖の構造解析についての研究結果を述べる。糖の¹H 化学シフトは1 位を除く と、34 ppm の狭い範囲に集中して観測されるため、シグナルの重なりが激しくなる。その ため、糖鎖が長くなると、¹H/¹³C の帰属が指数関数的に困難になる。本研究では、3 糖およ び4糖であるヘテロオリゴ糖の構造解析を2 次元 NMR 法により行った。

1-2 実験方法

2 種類のヘテロオリゴ糖は、日本大学生物資源科学部生命科学科・西尾らより提供された。 NMR 測定におけるサンプル調製では、各 5.0 mM になるように D₂O に溶解させ、1 次元¹H, ¹³C, DEPT135、2 次元 ¹H-¹³C HSQC, ¹H-¹³C HMBC, ¹H-¹³C HSQC-TOCSY, ¹H-¹H DQFCOSY, ¹H-¹H TOCSY, ¹H-¹H NOESY の各スペクトルをバリアン NMR システム(¹H 観測周波数 600 MHz) により測定した。5, 10, 15, 25, 30 ℃ の各温度において 1 次元¹H, ¹³C スペクトルを測定し、最 も 4 級炭素のシグナル分離の良い温度条件を検討した(1)。その結果、測定温度は、3 糖で は 25 ℃, 4 糖では 10℃ で行った。本章では、3 糖および 4 糖を Product 1 および Product 2 と して記述する。

1-3 結果および考察

FAB-MS により分子量測定を行ったところ(Fig. 1-1)、Product 1 が 3 糖、および Product 2 が 4 糖のオリゴ糖であることが判明した。Product 1 の 1 次元 ¹H, ¹³C スペクトルを Fig. 1-2, ¹H-¹³C HSQC スペクトルを Fig. 1-3 に示す。Product 1 では、63-65 ppm の狭い領域に多くの ¹³C シグナルが観測されているのがわかる(Fig. 1-2B)。1 次元 ¹H, ¹³C スペクトル、および ¹H-¹³C HSQC(Fig. 1-3)スペクトルからシグナルの帰属を開始し、¹H-¹H DQFCOSY, ¹H-¹H TOCSY により、¹H スピンネットワークを抜き出し、各糖をユニットとして帰属を行った。グリコシド結合を介したユニット間のロングレンジ ¹H-¹³C 結合は、 ¹H-¹³C HMBC により観測した。これにより、ユニットの配列を決定した。¹H-¹³C HMBC スペクトルおよび解析結果を Fig. 1-4 に示す。Product 1 は*N*-アセチル-1-ケストサミン(Fig. 1-5)と決定した。

Fig. 1-1 Product 1 および Product 2 の FAB-MS スペクトル。[M+H]⁺, [M+Na]⁺の 各イオンピークをスペクトルに示した。

Fig. 1-2 Product 1 の(A) ¹H, (B) ¹³C スペクトル (拡大)

Fig. 1-3 Product 1 の ¹H-¹³C HSQC スペクトル

Fig. 1-4 Product 1 の(A) ¹H-¹³C HMBC スペクトル, (B) *N*-アセチル-1-ケストサミンの構造式 および ¹H-¹³C HMBC スペクトルで観測されたグリコシド結合を介したユニット間のロン グレンジ ¹H-¹³C 結合

Fig. 1-5 N-アセチル-1-ケストサミンの NOESY スペクトルより観測された、糖のユニット間の NOE

Product 2 に関しても同様に NMR による解析を行った。Fig. 1-6 以下、各スペクトルを示す。

Fig. 1-6 Product 2 の(A)¹H, (B)¹³C スペクトル (拡大)

Fig. 1-7 Product 2 の ¹H-¹³C HSQC スペクトル

Fig. 1-8 Product 2 の(A) ¹H-¹³C HMBC スペクトル, (B) *N*-アセチルニストサミン の構造式および¹H-¹³C HMBC スペクトルで観測されたグリコシド結合を介した ユニット間のロングレンジ ¹H-¹³C 結合。

Fig. 1-9 N-アセチルニストサミンの NOESY スペクトルより観測された、糖のユニット間の NOE。

Fig. 1-10 (A) *N*-アセチル-1-ケストサミン、(B) *N*-アセチルニストサミンの¹H および¹³C 帰属結果。上段:¹H、下段:¹³C の各化学シフト値を示す。

Product 1 は*N*-アセチル-1-ケストサミン、Product 2 は*N*-アセチルニストサミンと構造決定 できた。¹H および ¹³C 帰属結果を Fig. 1-10 に示す。両化合物において、¹H-¹³C HMBC スペク トルにより観測されたグリコシド結合を介したユニット間のロングレンジ ¹H-¹³C 結合が、 各ユニットの配列を決める際に重要となる。本研究では、¹H-¹³C HMBC 以外に ¹H -¹H NOESY による各ユニット間の NOE ピークを観測し、ユニットの配列を裏付けることができ た。タンパク質および核酸では、連鎖帰属を行う際に、通常用いる NOE ピークであるが、 糖鎖においても連鎖的な NOE ピークが大変有用であることが示された。

1-4 結論

アミノ酸やヌクレオチドと比較して、糖は構造が似ているため、NMR での帰属が困難に なる。そのため、NMR による多糖の構造解析例は少ない。本研究では、N-アセチルスクロ サミンを出発物質としていることより、ある程度の構造の推定は可能であったものの、糖の 結合位置を決定するには高感度の¹H-¹³C HMBC スペクトルが不可欠である。また、Fig. 1-5, Fig. 1-9 で示したようにオリゴ糖での sequential NOE ピークも、¹H-¹³C HMBC の結果を裏付け る意味で大変有用であった。sequential NOE ピークによる連鎖帰属は、核酸およびペプチド タンパク質において用いられる手法である。核酸の場合、塩基および糖の化学シフト範囲は、 それぞれ7-9 ppm、3-5 ppm と分かれているため、塩基(*i*) – 糖(*i*+1)の sequential NOE ピーク は比較的帰属しやすい。本研究で構造解析を行った N-アセチル-1-ケストサミン、N-アセチ ルニストサミンは塩基を有しないため、糖(*i*) – 糖(*i*+1)の sequential NOE ピークのみの帰属と なり、当初はその有効性を疑問視したが、実際には予想以上に構造確認に有用であった。分 岐した多糖での応用も可能と考えられる。 第1章 酵母β-フルクトフラノシダーゼとN-アセチルスクロサミンの分子間相互作用の解析

1-1 序論

ヒトミルクオリゴ糖に関する研究例から、*N*-アセチルグルコサミン(GlcNAc)のような *N*-アセチルアミノ糖を含む種々のヘテロオリゴ糖には、有用生理機能が期待される (2-4)。このようなタイプのオリゴ糖の開発は、原料となる *N*-アセチルアミノ糖が高価であったため、 今まで積極的に行なわれてこなかった。しかし、GlcNAc の有用生理機能特性が確認される につれ、バイオマス・キチンからの生産が本格的に行なわれるようになり、大量かつ安価に 入手できるようになった。このような状況のもと、本研究ではGlcNAc を含む新規ヘテロオ リゴ糖の構造解析および機能解析を行った。GlcNAc および GlcNAc を含む新規ヘテロオリゴ 糖の一つである *N*-アセチルスクロサミン (SucNAc)の構造式を Fig. 1-1 に示す。スクロース誘 導体である SucNAc (5) は、酵母β-フルクトフラノシダーゼ (インベルターゼ) に対して、 スクロースとは異なる反応を示す。つまり、スクロースはインベルターゼにより加水分解さ れるが、SucNAc は加水分解されない (6)。このインベルターゼに対する差異を分子間相互 作用の観点より、NMR で解明することを本章の目的とした。

Fig. 1-1 (A) *N*-アセチルグルコサミン(GlcNAc) および (B) *N*-アセチルスクロサミン (SucNAc)の構造式

1-2 実験方法

(1-2-1) 薄層クロマトグラフィー (TLC) によるスクロースの加水分解の観測

先ず、スクロースの加水分解過程を薄層クロマトグラフィーにより観測した。20 mM クエン酸ナトリウム緩衝液 (pH 5.5) にオリゴ糖を最終濃度 26 mM になるように調製し、1.0 mL を使用した。このオリゴ糖水溶液と 0.05 mL の 3.1 unit インベルターゼを混合し、30℃ で反応させた。反応後、TLC プレート (Silica Gel 60 N, 230-400 mesh, E. Merck, Darmstadt, Germany) にスポット後、*n*-BuOH / pyridine / H₂O (8:3:1)を展開液として分離させた。2.4% H₃(PMo₁₂O₄₀)•*n*H₂O, 5% H₂SO₄ と 1.5% H₃PO₄ を含む水溶液を噴霧後、加熱して可視化した。

(1-2-2) NMR によるスクロースの加水分解過程の観測

¹H NMR により、SucNAc および GlcNAc 共存下におけるスクロースのインベルターゼによる加水分解過程を観測した。スクロース濃度は 3.0 mM、インベルターゼ濃度は 6.0 μ M に固定し、SucNAc および GlcNAc 濃度を 0.0, 3.0, 30 mM と 3 段階に分けて、加水分解の経時変化を観測した。内部標準には 1.0 mM DSS-ds を使用し、化学シフトを 0.0 ppm に合わせた。また、スクロースの H1 シグナルの定量における内部標準としても用いた。NMR 装置には Varian 600 MHz NMR system を使用し、全ての NMR 測定は 20°C で行った。

(1-2-3) 等温滴定カロリーメトリーによる相互作用解析

インベルターゼと N-アセチルスクロサミン (SucNAc) の分子間相互作用を、等温滴定カロ リーメトリー (ITC) により解析した。ITC 装置は GE Healthcare 社製 iTC200 を使用した。イ ンベルターゼおよび SucNAc を10 mM リン酸ナトリウム緩衝液 (pH 7.5) で透析し (1000 mL x 3)、コントロールには、透析の外液を用いた。滴定では、サンプルセルに 0.2 mM インベル ターゼ水溶液を 204 µL 挿入し、2.0 mM SucNAc 水溶液を 2.0 µL ずつ 20 回滴定を行い、各 滴定における微小な熱量変化を測定した。

(1-2-4) Saturation Transfer Difference (STD) NMR による相互作用解析

3 mM スクロースおよび 6.0 μ M インベルターゼの混合水溶液を調製し、STD 測定を行った。選択照射位置は 0.0 ppm、積算回数は 4096、測定時間は 4 時間、測定温度 20°C で行った。 WATERGATE W5 LOGSY (7) および WET-STD (8,9) のパルスシーケンスを Fig. 1-2 に示 す。本章では、presaturation および WET シーケンスにより水シグナルを消去した STD であ る WET-STD を使用した。

Fig. 1-2 (a) WATERGATE W5 LOGSY および (b, c) WET-STD パルスシーケンス。mixing time (*mix*), 1.2 s; data size, 8192 points; spectral width, 6500 Hz; number of scans, 512; recycle delay, 1.0 s; G_1 , -2.0; G_2 , 8.0; G_3 , 0.5; G_4 , 13.0; G_5 , 7.0 G/cm. Phase cycling: $\phi_1 = 4x$, 4(-x); $\phi_2 = 2x$, 2y, 2(-x), 2(-y); $\phi_r = x, -x, y, -y, -x, x, -y, y$. 本章では(c)を使用した。

1-3 結果および考察

(1-3-1) TLC および NMR によるスクロースの加水分解の観測

TLCによるスクロースの加水分解の観測結果を Fig. 1-3 に示す。スクロースは10分後には、 グルコースとフルクトースに加水分解されていることが、それに対して、SucNAc は全く加 水分解されていないことが分かる。

Fig. 1-3 インベルターゼによる(A) スクロース、 (B) SucNAc の加水分解。加水分解の反応 時間は 0, 10, 30, 60 min で行い、標準物質として、(A) では、スクロース (Suc)、グルコース (Glc) およびフルクトース (Fru) を左側の 3 レーンにロードした。同様に (B) では、フル クトース (Fru)、*N*-アセチルグルコサミン(GlcNAc) および (B) *N*-アセチルスクロサミン (SucNAc) を左側の 3 レーンにロードした。

次に、¹H NMR により、SucNAc および GlcNAc 共存下におけるスクロースのインベルター ゼによる加水分解過程を観測した(Fig. 1-4)。δ¹H 5.40 のシグナルがスクロースの H1 であ り、このシグナル強度の経時変化を観測した。加水分解が進行するにつれ、H1 シグナル強度 が減少する。スクロースに対して、モル比にして 10 倍量の SucNAc が存在している場合(Fig. 1-4B)、明らかに H1 シグナルの減少が遅くなっていることが判明した。この結果は、SucNAc がインベルターゼによるスクロースの加水分解を阻害していることを示している。従って、 SucNAc がインベルターゼに相互作用することが考えらえる。Fig. 1-1 に示すように、SucNAc とスクロースの構造の相違は、2 位のアミドアセチル基 CH3-C(=O)-NH-である。この原子団 がインベルターゼに対する阻害活性をもたらす中心的要因であるかを調べるため、*N*-アセチ ルグルコサミン (GlcNAc) においても同様に、加水分解実験を行った (Fig. 1-5)。

Fig. 1-4 ¹H NMR によるスクロースの加水分解の観測。 (A) 3 mM スクロース+ 3 mM SucNAc+6.0 μM インベルターゼ。 (B) 3 mM スクロース+ 30 mM SucNAc+6.0 μM インベ ルターゼ。δ¹H 5.40 のシグナルがスクロースの H1 であり、このシグナル強度の経時変化を 観測。

Fig. 1-5 ¹H NMR によるスクロースの加水分解の観測。 (A) 3 mM スクロース+ 3 mM GlcNAc+6.0 μM インベルターゼ。 (B) 3 mM スクロース+ 30 mM GlcNAc+6.0 μM インベ ルターゼ。δ¹H 5.40 のシグナルがスクロースの H1 であり、このシグナル強度の経時変化を 観測。

SucNAc および GlcNAc 存在下でのスクロースの加水分解過程を解析するため、スクロースのH1シグナルの面積強度をプロットした(Fig. 1-6)。GlcNAc 存在下では、スクロースの加水分解はほとんど影響を受けないことが分かった(Fig. 1-6B)。2位のアミドアセチル基のみでは、インベルターゼに対する阻害活性を有しないものと考えられる。Fig. 1-6A に示すように、SucNAc 存在下では、スクロースの加水分解が抑制され、SucNAc が過剰に存在する方がインベルターゼに対する阻害が高くなることが判明した。この結果より、SucNAc はインベルターゼに相互作用し、その酵素活性を阻害することが分かった。

Fig. 1-6 ¹HNMR によるスクロースの加水分解における H1 シグナル面積強度の経時変化。

- (A) (●)3 mM スクロース、(□)3 mM スクロース+3 mM N-アセチルスクロサミン、(▲)3 mM スクロース+30 mM N-アセチルスクロサミン
- (B) (●)3 mM スクロース、(□) 3 mM スクロース+3 mM N-アセチルグルコサミン、(▲) 3 mM スクロース+30 mM N-アセチルグルコサミン

(1-3-2) N-アセチルスクロサミンーインベルターゼの分子間相互作用解析

¹H NMR によるスクロースの加水分解過程の観測結果より、*N*-アセチルスクロサミンーインベルターゼの分子間相互作用が示唆された。この相互作用を解析するため、¹H NMR により滴定実験を行った。3 mM *N*-アセチルスクロサミン水溶液に対して、6.0 µM インベルターゼ水溶液で滴定し、¹H NMR によりメチル基および H1 シグナルの化学シフト変化を観測したが(Table 1-1)、変化は認められなかった。次に、等温滴定カロリーメトリー(ITC)により、相互作用解析を行った(Fig. 1-7)。ITC は生体分子間の反応を測定するために使用され、標識を使うことなく結合親和性、結合比、溶液中の結合反応のエントルピーおよびエンタルピーを特定できる手法である。目的のタンパク質が入っているセルにシリンジに入れたリガ

インベルターゼ (μM)	δCH ₃	δН1
0	2.05	5.38
10	2.05	5.38
20	2.04	5.38
30	2.05	5.38
40	2.04	5.38
50	2.04	5.38
60	2.04	5.38
100	2.04	5.38
130	2.04	5.38

Table 1-1 インベルターゼ滴定における N-アセチルスクロサミンの¹H 化学シフト変化

Cell: 0.2 mM β-fructofuranosidase Syringe: 2.0 mM *N*-acetylsucrosamine (SucNAc)

Fig. 1-7 等温滴定カロリーメトリーによる滴定結果

ンドを一定量、一定間隔で滴定する。結合すると吸熱または発熱反応が起こり、高感度のカ ロリメーターでこの熱量変化を測定し、結合定数を求める。Fig.1-7 に示すように、ITC によ る解析において熱量変化は認められず、SucNAc とインベルターゼによる分子間相互作用を 示唆する結果は得られなかった。解離定数は20 mM 以上と弱い親和性であることが推定され た。¹H NMR による滴定および等温滴定カロリーメトリーによる滴定からも、SucNAc と インベルターゼによる分子間相互作用を示唆する結果は得られなかった。

次に、¹H NMR による saturation transfer difference (STD) 実験を行った。STD は、インベル ターゼ (タンパク質) に結合する SucNAc (リガンドに相当する低分子化合物) を選択的に 観測することを目的とした測定手法である。Fig. 1-8 に STD の模式図を示す。

Fig. 1-8 STDの模式図。リガンドに相当する SucNAc が過剰量存在するため、平衡は解離 方向に傾く。

飽和移動は分子量が大きいほど効率的に起こる。タンパク質の「H を選択的に励起して飽 和すると、タンパク分子内で速い飽和移動(saturation transfer)が起こり、タンパク質全体が 飽和される。この状態のタンパク質にリガンドが結合すると、結合したリガンドに飽和が伝 達される。飽和は結合と解離の化学交換を介して溶液中のリガンドに伝えられる。そして、 飽和されたリガンドの信号強度は減少する。選択励起しない時のスペクトルとの差をとれば、 相互作用しない化合物の信号はキャンセルされ、結合リガンド由来の信号のみが得られる。 一般的に選択励起の位置はリガンドの信号が観測されない、タンパク質のメチル基の領域 0.0 ~0.6 ppm 位を選ぶ。得られたスペクトルの中で、一番大きなシグナルを 100%とし相対強度 であらわす。通常の STD 実験では、リガンドを 10 mM 程度、タンパク質を 0.1 mM 程度に 調製することが多いが、インベルターゼの分子量が 260 kD と巨大であるため、濃度を 6.0 μM に下げてサンプル調製を行った。Fig. 1-9 に実験結果を示す。この測定法では、0.0 ppm を選

Fig. 1-9 (A) 3 mM *N*-アセチルスクロサミン + 6 μ M インベルターゼの ¹H スペクトル。(B) STD スペクトル。(C) 分離した各シグナルの H1'のシグナル強度に対する相対強度。

択照射し、タンパク質の¹Hを飽和させ、磁化を結合している SucNAc に移し、最終的に解離 状態の SucNAc の¹H シグナルを検出する。インベルターゼが 6.0 μM と低濃度であったが、 STD においてインベルターゼに結合する SucNAc のシグナルが明瞭に観測された。これらの 結果より、SucNAc は弱い親和性ながらもインベルターゼと相互作用することが判明した。

¹H スペクトルにおいて、分離した各シグナルの HI'のシグナル強度に対する相対強度を Fig. 1-9 B,C に示す。インベルターゼとの相互作用において、結合への関与が大きい¹H ほど、シ グナル強度が大きくなることが報告されている。フルクトース環部分のシグナルが多数観測 されていることより、インベルターゼとの相互作用にはアミドアセチル基以外に、スクロー ス様の2糖の構造が必要であることが STD により分かった。単糖である GlcNAc は、阻害活 性を示すには分子体積が小さすぎることが考えられる。

1-4 結論

本章では、N-アセチルアミノ糖である N-アセチルスクロサミンがインベルターゼにより、 加水分解されないことを TLC および¹H NMR スペクトルより明らかにし、スクロースの加 水分解を阻害する効果を有することを見出した。この結果より、N-アセチルスクロサミンは インベルターゼと分子間相互作用する筈と考え、分子間相互作用を検出する実験を試みた。 等温滴定カロリーメトリーおよび¹H NMR スペクトルによる滴定実験からは、相互作用を示 唆する結果は得られなかったことより、解離定数は20 mM 以上とかなり弱い相互作用である ことが分かった。このような弱い親和性であっても、STD によりリガンドシグナルが選択的 に検出することが可能であった。創薬分野などにおいて、リード化合物のスクリーニングに STD が効果的に用いられる分析手法であると期待できる。

第2章 α-シヌクレイン重合化におけるドパミンとの相互作用解析

2-1 序論

パーキンソン病 (Parkinson's Disease : PD) は脳内物質の一種であるドパミンが正常に働か なくなり、分泌量が少なくなることでおこる神経変性疾患の一つである。臨床症状としては、 振戦・無動・筋固縮・姿勢反射障害が四大症状として認められており、我が国では人口 1000 人当たり約1人の有病率となっている。病理学的には、中脳の黒質におけるドパミン産生細 胞の変性・脱落、残存神経細胞の中への Lewy 小体 (LB) の出現が見られる。この LB の主 要成分がアミロイド線維化した α-シヌクレインである (10)。

α-シヌクレイン は 140 アミノ酸残基から構成されており、分子量 14460 Da の比較的小 さな核内タンパク質である。脳内の様々な部分で発現が確認されており、脳の可溶性タンパ ク質の 1 % を占めると推定されている (11)。その機能については諸説あるが、未だに解明 されていない。*In vitro* では三次構造をほとんど持っておらず、ランダムコイル様構造をとる (12)。

アミノ酸配列は Fig.2-1 に示すとおり N 末端領域に KTKEGV モチーフを含む不完全な 繰り返し配列が 7 個存在しており、アミノ酸配列から α -helix を形成することが予測されて いる (13)。中央部には NAC (Non-Amyloid β -Component of AD Amyloid) 領域 (14) と呼ばれ る疎水性領域が存在している。C 末端には強い酸性領域が存在し、可溶化に寄与していると 考えられている。また *in vitro* で形成された α -シヌクレイン アミロイド線維は、他のアミ ロイド形成タンパク質と同様に β -sheet 構造を有する (15)。

Fig. 2-1 α-synuclein のドメイン構造 NAC: Non-Amyloid β-Component of AD Amyloid

PD の 90% 以上が孤発性 PD とよばれる非遺伝性のものであるが、残りの 5~10%は遺伝 性の家族性 PD である。PD の発症年齢のピークは 50 歳代後半から 60 歳代であるが、家 族性では若年での発症も多い。α-シヌクレイン の点変異が常染色体優性遺伝性 PD 即ち家 族性 PD の原因になるという報告があり、3 種類のミスセンス変異、A30P(30 番目のアラニ

ンがプロリンに変異する塩基置換)、A53T (53 番目のアラニンがスレオニンに変異する塩基置換)、E46K (46 番目のグルタミン酸がリシンに変異する置換) が知られている (16 - 18)。

これまでの実験より、アミロイド線維形成過程において中間体が存在すること、またその 中間体は α-シヌクレイン オリゴマーであることが報告されている (19)。また, *in vivo* での 研究において、神経変性毒性を示すのはアミロイド線維ではなくオリゴマーであるという報 告もある (20)。現在オリゴマーの構造や機能を解明するために様々な研究が進められている が、オリゴマーの分子量が大きく、構造的にも不安定であるため、直接その存在を確認する のは困難である。オリゴマー形成はカテコールアミン類のドパミンやその他酸化化合物 (キ ノン体など) によっても促進されるという報告がある (21,22)。特に、 C 末端欠損変異体を 用いたオリゴマー形成実験においては、α-シヌクレイン の 125-129 (YEMPS) 残基がドパミ ンとの相互作用において重要な役割を果たしていることが報告されている(23)。本研究では、 オリゴマー形成や α-シヌクレイン とドパミンの相互作用などを明らかにするため、NMR に より分子間相互作用を解析し、水溶液中における分子の挙動を明確にすることを目的とした。

タンパク質の構造解析では、X線結晶構造解析が王道となっているが、α-シヌクレイン の ように一定の立体構造を保持せず、ランダムな領域が多いタンパク質の構造解析には NMR 法がより有効な分析手法となる。

2-2 実験方法

(2-2-1) α-シヌクレインの大量発現と精製

α-シヌクレインの大量発現は、東京薬科大学生命科学部・小島正樹教授および同大学薬学 部・田代桜子博士らの方法 (19) に従い行った。発現ベクター pET15b (Novagen) にヒト wild type (WT) α-シヌクレインの遺伝子をサブクローンしたものを使用し、発現ベクターを用いて 形質変換した Escherichia coli BL21 (DE3) の単独コロニーを ampicillin 100µg/L 含有の LB 液体培地 20 mL 中で 37 ℃ 一晩培養した後、1.5 L の M9 培地 (12.8 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1.0 g/L NH4Cl, 1 mM MgSO4, 0.1 mM CaCl2, 2 g/L Glucose, 100 µg/L ampicillin) に植菌し、ジャーファメンター (丸菱バイオエンジ) を用いて 37 ℃で培養した。 OD₆₀₀が 0.4 に達した時点で温度を 30 ℃ に下げ、終濃度が 1 mM になるように IPTG を 加えて誘導発現を行い、更に一晩培養を行った。集菌後、1.5 L 分の菌体に対して sonication buffer (20 mM Tris-HCl pH 8.0, 200 mM NaCl, 20 mM EDTA) を 30 mL 加え、ソニケーター (Branson 250D) を用いて、大腸菌細胞膜の超音波粉砕を行った。この細胞破砕液を 4 ℃、 13,000 rpm で 1 時間遠心し、可溶性画分と不溶性画分に分離した。その後、可溶性画分の みを分取し、80 ℃の水浴中で20分加温することで不要なタンパク質を沈殿させた。上清 画分を限外ろ過: ディスク YM-3 NMWL 3,000 (amicon) により濃縮後、サイズ排除クロマ トグラフィー ÄKTA prime (GE Health Science) 、陰イオン交換クロマトグラフィーなどによ り精製を行った。

(2-2-2) ¹H-¹⁵N HSQC 法による相互作用解析

α-シヌクレインードパミンの相互作用解析のために、タンパク質側から観測する手法として¹H-¹⁵N HSQC 測定を行った。¹⁵N 安定同位体で標識されたタンパク質は、M9 培地中の窒素源である NH4Cl を ¹⁵NH4Cl (99%) に置換し、培養を行うことで調製した。0.2 mM ¹⁵N-α-シヌクレイン水溶液に、最終濃度としてドパミンが 1.0 mM になるように調製し、LOCK に必要な D₂O を 90% H₂O/10% D₂O の割合になるように加えた。最終的に 0.4 mL 調製し、特殊試料管シゲミーチューブを用い、装置はブルカー 500MHz NMR システムを使用し、積算回数は 16、測定時間約 90 分、測定温度 4°Cで経時変化を観察するため、0 時間、24 時間、72 時間の測定を行った。また、還元型グルタチオン 1 mM 、ドパミン 1 mM を添加した試料に関しても同様に測定した。NMR データの処理及び解析には、NMRPipe ソフトシステム (NIH) および解析ソフト Sparky (UCSF) を用いた.

(2-2-3) WaterLOGSY NMR 法による相互作用解析

リガンド側からの観測手法として W5 シーケンスによる WaterLOGSY (Water-Ligand Observed via Gradient Spectroscopy) 測定を行った。WaterLOGSY 法の模式図を Fig. 2-2 に WATERGATE W5 LOGSY および関連する WaterLOGSY のパルスシーケンスを Fig. 2-3 に示す。

Fig. 2-2 WaterLOGSY 法の模式図

Fig. 2-3 (a) WaterLOGSY, (b) DPFGSE LOGSY および (c) WATERGATE W5 LOGSY パルス シーケンス。mixing time (*mix*) = 1.2 s; data size = 4096 points; spectral width = 6500 Hz; number of scans = 256; recycle time = 1.0 s; G_1 = 2.0 G/cm; G_2 = 2.2 G/cm; G_3 = 1.0 G/cm; G_4 = 8.0 G/cm; G_5 = 0.5 G/cm; G_6 = 13.0 G/cm; G_7 = 7.0 G/cm. Phase cycling: ϕ_1 = 4(x, -x); ϕ_2 = 2x, 2y, 2(-x), 2(-y); ϕ_r = x, -x, y, -y, -x, x, -y, y (b)において, sel1(180°) = 4y, 4(-y); sel2(180°) = y. 2D 測定では、data size in t_1 = 64. complex points; data size in t_2 = 1024; spectral width in f_1, f_2 = 6500 Hz; 積算回数: 64 本研究で は、WATERGATE W5 LOGSY を使用した。

タンパク質や低分子化合物ではなく、溶媒である水の磁化を選択的に残し、それ以外の信号 を消去する。この残った水の磁化がタンパク質から結合したリガンドを経由して解離状態の リガンドへ移動することを利用する方法である。試料として、1) 0.1 mM α-シヌクレイン水 溶液に最終濃度としてドパミンが 8.0 mM、2) 0.1 mM α-シヌクレイン水溶液に最終濃度と して還元型グルタチオンが 8.0 mM、3) 0.1 mM α-シヌクレイン水溶液に最終濃度としてド パミンが 8.0 mM と還元型グルタチオンが 8.0 mM になるように調製し、90% H₂O/10% D₂O の割合になるように D₂O を加え、各 0.6 mL を試料管に入れ測定した。装置はバリアン 600 MHz NMR システムを使用し、積算回数は 64、測定時間は 2 時間、20℃で測定を行った。

(2-2-4) ESI-TOF 質量分析

ESI-MS 測定には TOF-MS 装置 (JEOL-JMS-T100) を使用した。ESI-MS 測定ではタンパ ク質のイオン化を促し、かつタンパク質が分解しない溶媒が要求される。条件検討を行っ た結果、比較的揮発性の高い 10 mM ammonium acetate, pH 7.5 が最もイオン化に適してい た。標準物質としてα-シヌクレインの分子量に近い Lysozyme (mw: 14307)を用い、0.2 mM α-シヌクレインにドパミン 1 mM 添加した試料と、ドパミン 1mM および還元型グルタチオ ン 1 mM を添加した試料を準備し測定を行った。イオン化モード: ESI +、加速電圧: 2.0 kV、 ニードル電圧: 2600 V、脱溶媒和温度: 100 °C、流速: 5 µL/min の条件で infusion 測定を 行った。

2-3 結果および考察

(2-3-1) ¹H-¹⁵N HSQC スペクトルを用いた α-シヌクレインードパミン相互作用解析

アミロイド線維化前の α-シヌクレイン¹H-¹⁵N HSQC スペクトルの帰属は既に報告され ている化学シフト (24) に基づき行った (Fig. 2-4)。0.2 mM α-シヌクレイン水溶液にドパミ ンの最終濃度 1.0 mM 存在下で、¹H-¹⁵N HSQC スペクトルを測定し、経時変化を観測した (Fig. 2-5)。ドパミン添加直後 (0 時間)のスペクトルでは化学シフトの変化は観測できな かったが、シグナル強度の減少が観測された。時間経過に伴って V3, L8, S9, H50, E126, M127, S129 残基において特異的に化学シフトの変化が観測された。拡大スペクトル (Fig. 2-6) に L8, S9, S129 残基の特異的変化を示す。これらの残基はドパミンと相互作用していると推測 され、これらの結果から α-シヌクレインの N 末端領域と C 末端領域がドパミンと相互作用 していることが示唆される。α-シヌクレインのオリゴマー形成はドパミンとの結合によって 誘導されるために、C 末端、N 末端共にオリゴマー化にキー的役割を演じると考えられる。 また、還元型グルタチオンを 1.0 mM のみ添加した時では化学シフトの変化は確認できなか ったが、シグナル強度の減少が観測できた。

Fig. 2-4 0.2 mM α-シヌクレインの ¹H-¹⁵N HSQC スペクトル

Fig. 2-5 0.2 mM α-シヌクレイン+1.0 mM ドパミンの¹H-¹⁵N HSQC スペクトル。0 時間(黒)、 24 時間(青)、72 時間(赤)の経時変化を観察した。

Fig. 2-6 Fig. 2-5 の拡大スペクトル。Leu8, Ser9, Ser129 の化学シフトの変化を示す。

(2-3-2) WaterLOGSY による α-シヌクレインードパミン相互作用解析 WaterLOGSY 法では、目的のタンパク質と結合性があるリガンドは上向きに、結合して

Fig. 2-7 WATERGATE W5 LOGSY スペクトル (a) 0.1 mM α-シヌクレイン+8.0 mM DA, (b)
0.1 mM α-シヌクレイン + 8.0 mM GSH, (c) 0.1 mM α-シヌクレイン + 8.0 mM DA + 8.0 mM
GSH. (d) サンプル(c)の ¹H スペクトル

いない化合物のシグナルは下向きの位相で観測される。WaterLOGSY スペクトル (Fig. 2-7) を見ると、(a)より α -シヌクレインードパミン (DA) の結合が確認された。一方、(b)より還 元型グルタチオン (GSH) との結合は確認されなかった。また(c)より、還元型グルタチオン 存在下においても、 α -シヌクレインーDA の結合が確認された。この結果から、還元状態に おいても α -シヌクレインはドパミンと結合することが明らかになった。

Fig. 2-8 ESI-TOF スペクトル (a) 0.2 mM α-シヌクレイン+1.0 mM DA、 (b) 0.2 mM α-シヌ クレイン+1.0 mM DA+1.0 mM GSH

(2-3-3) ESI-TOF による α-シヌクレインードパミン相互作用解析

ESI-TOF 質量分析はイオン源としてソフトイオン化の一つであるエレクトロスプレーイ オン(ESI)化法を用い、検出部分としてイオン化した試料が検出器に到達するまでの時間差を 測定する飛行時間型(TOF)から構成されている。通常、MS スペクトルは m/z (質量/電化数) で表される。ESI 法では、イオン化によってタンパク質に複数のプロトンが付加するため、 多価イオンピークを含むスペクトルが得られる。Fig. 2-8 は 10 価の状態の拡大スペクトルで あるが、α-シヌクレイン単量体 (mw: 14460) に相当するピークが確認される。また、ドパミ ン (mw: 153) 1 mM 添加直後の ESI-TOF スペクトルにおいて、 α-シヌクレイン単量体より 分子量がドパミン 1 分子増加したイオンピークが観測され(Fig.2-8 a)、グルタチオン存在下で はドパミン 1 分子 増加したイオンピークが観測された(Fig.2-8 b)。この結果から、 α-シヌクレインとドパミンの相互作用が判明した。

2-4 結論

α-シヌクレインードパミン相互作用解析に関して、¹H-¹⁵N HSQC スペクトル、WaterLOGSY スペクトル、ESI-TOF MS スペクトルからのいずれの結果にも矛盾は見られず、α-シヌクレ インに対してドパミンは結合活性を有するが、グルタチオンは有しないことが明確になった。 オリゴマー化にドパミンが関与することが示唆された。

また、第1章では、STD 法により酵母β-フルクトフラノシダーゼとN-アセチルスクロサミンの分子間相互作用の解析を行い、本章では、WaterLOGSY 法を中心に用いて、α-シヌクレインードパミンの分子間相互作用の解析を行った。WaterLOGSY 法では、親和性のない結合に関与しない低分子化合物のシグナルが逆の位相、つまり下向きに観測されるため、複数のリガンド候補の化学シフトが重ならない場合、ひとつのスペクトルで結合するか否かの判断が可能になる。本章では、WaterLOGSY 法の有用性が示された。

第3章 フッ素化合物ジフルニサルーヒト血清アルブミンの相互作用解析

3-1 序論

第1章および第2章において、STD 法および WaterLOGSY 法により、タンパク質に結合す る低分子化合物の選択検出を ¹H 観測により行った。医薬品として多種類存在する含フッ素 化合物の場合、¹H 検出も有効な手法であるが ¹⁹F も ¹H 同様に高周波核であり、天然存在比 が 100%であることから、NMR による観測が有効になるものと考えられる (25-29)。本研究 では、タンパク質の ¹H から含フッ素化合物の ¹⁹F への飽和移動を起こし、 ¹⁹F での検出を試 みた。通常の NMR 装置では、高周波の観測は ¹H または ¹⁹F のどちらか一つしかできないた め、2 次元 ¹H-¹⁹F スペクトルの測定は不可能である。高周波チェンネルを増設すれば 2 次元 ¹H-¹⁹F 相関スペクトルの測定は可能になるが、高額の設置費用がかかるため、汎用性に欠け る。本研究では、アジレントテクノロジーの技術協力により、高周波チェンネルが一つのみ の汎用 NMR 装置において、2 次元 ¹H-¹⁹F スペクトル測定を試み、 ¹⁹F 1 H ${}$ STD 法への応用 を行った。含フッ素化合物の医薬品は、フッ素の特異的な化学的性質より多くの誘導体が合 成され、生理活性が確認されている (30-32)。

3-2 実験方法

NMR 装置はバリアン NMR システム(¹H 観測周波数:600 MHz)、プローブにはバリア ン製¹H/¹⁹F/¹³C ダブルチューンプローブを使用した。試料には 5.0 mM ジフルニサル+0.1 mM ヒト血清アルブミン (HSA)を使用し、20 ℃ で測定を行った。ジフルニサルの構造式を Fig. 3-1 に示す。

Fig. 3-1 ジフルニサルの構造式

現有のNMR 装置の分光性の構成を Fig. 3-2 (a) に示す。¹H 用のトランスミッター(送信機) より高周波パルスが出力され、ハイバンド用増幅器を経由してプローブから照射される。同 様に、¹³C 用のトランスミッター(送信機)より低周波パルスが出力され、ローバンド用増 幅器を経由してプローブから照射される。今回、現有装置を改変することなく¹H-¹⁹F スペク トルの測定を行うため、分光計の回路を変更することなく、バリアン NMR システム内にお いて Fig. 3-2 (b) のように変更を行った。この変更は VnmrJ 4.0 以降において可能になったも のである。¹³C 用のトランスミッターより¹H 用の高周波パルスを送信し、一台しかないハイ バンド用増幅器を共有させることにより、2 次元¹H-¹⁹F 相関スペクトルの測定を行った。

Fig. 3-2 (a) 現有の NMR 分光計の構成、(b) ハイバンド用増幅器を共有させた構成

Fig. 3-2 (b)の構成を用いて使用した¹⁹F {¹H }STD 法のパルスシーケンスを Fig. 3-3 に示す。 ¹⁹F {¹H}STD 法では、メチル基などタンパク質の特定の領域を選択照射し、その磁化を結合 するジフルニサルの¹⁹F に移動させて¹⁹F で検出することを目的としている。逆に、¹H {¹⁹F}STD 法では、ジフルニサルの¹⁹F を選択照射し、その磁化を結合するタンパク質である HSA に移し、¹H で検出する。

Fig. 3-3 ¹⁹F {¹H }STD 法のパルスシーケンス。パラメーター: $d_1 = 1.0$ s, $G_1 = 7.2$ G/cm, gradient pulse width = 2.0 ms. Phase cycling: $\phi_1 = x, -x, -x, x, y, -y, -y, y, \phi_1 = x, x, -x, -x, y, y, -y, -y$.

3-3 結果および考察

5.0 mM ジフルニサル+0.1 mM ヒト血清アルブミン (HSA) の ¹⁹F スペクトルおよび ¹⁹F $\{^{1}H\}$ STD スペクトルを Fig. 3-4 (a), (b)にそれぞれ示す。 ¹⁹F $\{^{1}H\}$ STD では、 ¹H 照射-¹⁹F 検出 を行っている。また、 ¹⁹F 照射-¹H 検出の STD である ¹H $\{^{19}F\}$ STD スペクトルを Fig. 3-5 (c) に 示す。 Fig. 3-4 (a) に示す ¹⁹F スペクトルでは、-112.9 ppm に 4'位の ¹⁹F および-114.8 ppm に 2' 位の ¹⁹F が観測されている。 (b) に示す ¹⁹F $\{^{1}H\}$ STD スペクトルでは、4'位の ¹⁹F のシグナル 強度大きくなっており、HSA と近接しているものと考えられる。 Fig. 3-5 (b) に示す WET-STD スペクトルでは、 HSA に結合するジフルニサルの ¹H シグナルが明瞭に観測されている。 ¹⁹F: -112.9 ppm を選択照射した ¹H $\{^{19}F\}$ STD スペクトルでは、 ¹H: 0.9 ppm 付近にブロードではあ るかシグナルが観測されている。これは、 ¹⁹F から磁化が飽和移動し、タンパク質である HSA

の¹Hに移動したものと考えられる。ジフルニサルと HSA のメチル基が結合に関与していることが分かる。

Fig. 3-4 5.0 mM ジフルニサル+0.1 mM ヒト血清アルブミンの (a) ¹⁹F スペクトルおよび (b) ¹⁹F {¹H }STD スペクトル。(b)では ¹H:0 ppm を選択照射した。

Fig. 3-5 5.0 mM ジフルニサル+0.1 mM ヒト血清アルブミンの (a) ¹H スペクトル、(b) WET-STD スペクトル、および (c) ¹H {¹⁹F}STD スペクトル。(c)では ¹⁹F : -112.9 ppm を選択照 射した。

含フッ素化合物-タンパク質複合体の相互作用解析手法として、本研究で考案された¹⁹F {¹H }STD 法が有用であることが示された。¹⁹F の選択的検出が可能になったことで、フッ素 を有しない他のリガンド候補との明瞭な識別が可能になった意義は大きい。新たに高額な高 周波チャンネルを増設することなく、また、分光計内の回路を変更する必要もなく、プログ ラム上での変更により¹H-¹⁹F NMR 相関スペクトルの測定が可能になった。本法が含フッ素 化合物のスクリーニングに適用であり、汎用性のある手法であることが以上の結果より示さ れた。今後の展開として、WaterLOGSY 法において、¹⁹F 検出が可能であるかなど幅広い応用 が期待できる。

第3部: 多変量解析

第1章 NMR 法による紅茶の成分分析

1-1 序論

近年の装置の向上により、LOCK に必要な重溶媒を加えるだけでジュース、コーヒー、ワ イン (Fig. 1-1) など多くの飲料水の直接 NMR 測定が可能になった。それに伴いメタボロミ クスや混合物解析の手法も発展してきた。スペクトルデータを統計学的な手法で解析するこ とによって混合成分の定性・定量が可能となり、様々な分野で NMR による解析が応用され てきている。混合成分の分析に NMR が使われる理由としては、再現性の高さ、化学的な指 紋を提供する、レファレンスデータベースを使用しての成分の同定、NMR 信号の面積は原 子の数に比例することによる定量性などがあげられる。

本研究では、¹H NMR スペクトルを多変量統計解析する手法によりスリランカの標高の異なる4箇所の茶園で栽培・製造された紅茶葉の品質の違いについての評価、さらに1次元と2次元の¹H NMR 測定から紅茶の成分分析を行うことを目的とした。

紅茶は世界中で広く消費される飲料である (33-34)。市場にあるお茶は主に4種類(緑茶、 白茶、ウーロン茶、黒茶)からなる。各々発酵プロセスが異なり、緑茶は発酵させていない、 白茶は軽く発酵させる。ウーロン茶は部分的に発酵させる。そして黒茶は発酵させる。最近 の研究によると、お茶類の中に人々の健康に良い影響を与える種々の成分が見つかったとい う報告がある (35-42)。紅茶は少し香気があり、わずかに苦く渋い味をしている。また、ウー ロン茶、緑茶、白茶より酸化が進み強い香気を持ち、酸化が進んでないお茶より多くの カフェインを含む (43)。茶葉を手で摘み、乾燥させたあとで、機械によるこね上げと圧縮に より紅茶は製造される。この製造過程の間に、酵素に触媒された酸化とフラボノールの部分 的な重合が生じる。結果として、テアフラビン類 (TFs)とテアルビジン類 (TRs)ができ、 紅茶の特徴である味と色が生じる(34)。加えて紅茶の乾燥葉の重量の10-12%フラボノイド類 が含まれる (44)。紅茶にするために使用したお茶の葉は同一種の植物であるが、お茶の味は 生育した環境の違いによって異なる。それゆえ、同一国内の気候状態の違いが化学組成の違 いを生じ、お茶の味ばかりではなくお茶の代謝も違ったものとすると考えられる。

スリランカにおいては、紅茶は茶葉が栽培された標高によって登録される。6箇所の主要 茶葉栽培地域があり、ヌワラエリア(Nuwara Eliya (RAN)>1900 m)、ディンブラ(Dimbula (UDA) = 1000_1500 m)、キャンディ(Kandy (MEDA) = 600_1200m)、ウバァ(Uva = 914_1524m)、低地ルフナ(low-grown area (YATA)<600 m)、そして高地(high-grown area> 1200 m)である。味や色を含む多くのファクターがお茶の品質に影響を与え、茶葉は良い品 質の紅茶を作るために最も基本で重要なファクターである。紅茶の品質は一般的にその香り、 風味、色をとうして評価されるが、味覚がお茶の品質に対する評価基準の鍵となる。一般的 にこの方法によって紅茶の品質を正確に区別することは難しい(45)。 最近,質量分析法 (MS) (46)、NMR (47)、ガスクロマトグラフィー/質量分析 (GC/MS) (48) と多変量解析を組み合わせて食品や医薬品の品質評価、薬物毒性評価 (49-50) に使用されてきている。多変量統計解析法、主成分分析法 (PCA) と部分最小二乗判別法 (PLS-DA) はしばしばプロファイリングとサンプルのグループ分類に有用であり、分離した化合物において最も有効的な変化を特徴づけるのに役立つ。お茶の品質評価においてNMRは他の分析技術より構造的な情報を多く与える。特に1次元、2次元NMR スペクトルから、紅茶の構成成分の分子構造情報を多く得ることができる。さらに、多変量統計解析と組み合わせることによって、紅茶の品質の違いに由来する主要成分の変化に特徴づけることができる。

Fjg. 1-1 飲料水の¹H NMR スペクトル (A) 100% パインジュース, (B) ボジョレー・ヌーボー 赤ワイン, (C) インスタントコーヒー・ネスカフェーGOLDブレンド, A と C は1D¹H NOESY スペクトル

1-2 実験方法

混合物解析やメタボロミクスの一般的な手順の模式図を以下に示す。(Fig. 1-2)

Fig. 1-2 多変量解析一般的手順(ブルカーワークショップ資料より)

(1-2-1) 試料:標高の異なる菜園の4種類の紅茶葉

愛知県豊橋市のワルツ(株)から市販されているスリランカ産セイロン高級紅茶、デルマ
 (Dilmah) 紅茶 WATTEシリーズを使用した。(ワルツ(株)提供)
 RAN (ヌワラエリア産 > 1900 m)、UDA (ディンブラ産= 1200 m)、MEDA (キャンディ産=600 m)、YATA (低地ルフナ産< 300 m)。

(1-2-2) 試料調製および標品

4種類の紅茶葉 (RAN, UDA, MEDA, YATA) 各 2 gに150mL の沸騰蒸留水を加えて加熱し 4分間沸騰させた。その後室温にて10分間放置し、遠心フィルターで濾過した溶液630µL に 内標として5mM TSP (3-(trimethylsilyl) propionic-2,2,3,3-d4 acid, sodium salt, 98 atom % D)の重 水 (D2O:同位体度 99.9%)溶液70 µL を添加した溶液を調製した。最終的に700 µLのNMR 測定用サンプルを調製した。多変量解析をするため、各紅茶について4本準備した。TSPは 内標 (δ 0.0 ppm) と定量用の標品とした。他に、化合物同定用の標品としてテアフラビン (TF: theaflavin) と3, 3-二没食子酸テアフラビン(TFG: theaflavin 3,3'-digallate)を用意した。

(1-2-3) NMR測定・処理・多変量統計解析 (51-52)

全ての¹H NMR測定(1次元 ¹H NOESY, 2次元 ¹H-¹H COSY & ¹H-¹H TOCSY : 25°C) は¹H 極低温プローブを装備したVarian 600 MHz NMR装置で行った。得られたスペクトルの変化は 代謝物同定・定量解析ソフト(Chenomx NMR Suite 5.0 software, professional edition : Chenomx Inc., Canada) と多変量解析ソフト(SIMCA-P version 12.0)を用いて解析した。NMRデータを バケット化、さらにバケット積分を実行し多変量解析ソフトに移行し、PCA解析、PLS-DA 解析を行い4種の紅茶間の違いを検討した。また、紅茶に含まれる成分を同定するために1 次元 ¹H NOESY, 2次元 ¹H-¹H COSYおよび¹H-¹H TOCSY NMRの測定を行った。 1-3 結果および考察

(1-3-1) 紅茶葉のNMR 解析 (53-55)

4種類の紅茶の1次元 (^IH NOESY) および2次元 (^IH-^IH COSY, ^IH-^IH TOCSY) ^IH NMR スペクトルを測定した。各シグナルの帰属は2次元 NMR を中心に標品およびすでに報告されているデーターと比較することで行った (56)。Fig. 1-3 に代表としてRAN の^IH NMR に示す。

Fig. 1-3 紅茶RAN の¹HNMR スペクトル

ある種のケミカルシフト (δ) は測定溶媒などの条件の違いによりわずかに異なったが、シ グナルパターンは標品と一致した。Fig. 1-3 に示したように、¹H NMR からテアニン (δ 1.10, 2.13, 2.37, 3.19, 7.97 ppm)、カフェイン (δ 3.22, 3.38, 3.77, 7.63 ppm)、TF (δ 2.74, 2.75, 2.86, 2.87, 4.21, 4.29, 5.41, 6.01-6.13, 6.86, 7.02, 7.15 ppm)、TFG (δ 2.93, 2.94, 3.00, 3.01, 5.03, 5.42, 5.52, 6.04-6.10, 6.58, 6.61, 6.86, 6.92, 6.94 ppm), TRG (δ 1.88, 1.98, 2.05, 2.08, 3.54, 3.62, 4.02, 4.14, 6.04-6.13, 6.85, 7.03, 7.16 ppm) を同定した。以上の結果,主要成分としてテアニン、カフェイン、テアフラビン (TF)、 3,3' ニ没食子酸テアフラビン (TFG)、3,3' ニ没食子酸テアルビジン (TRG) を特定すること ができた。Fig. 1-4 にテアニンとカフェインの構造式を示す。TF とTFG に関してはFig. 1-5 にてTRG に関してFig. 1-6 にて詳しく示す。

В

A

Fig. 1-4 紅茶から同定された成分の構造式 (A) テアニン (B) カフェイン

Fig. 1-5 (A) 4種の紅茶、RAN, UDA, MEDA, YATA の¹H NMR スペクトル(2.55–3.35ppm) 領域, (B) TF と(C) TFG の構造式および COSY, TOCSY(H↔H)相関

Fig. 1-5 に示すように、明らかに2つの化合物TF とTFG のシグナルがRAN 紅茶だけで観 測されている。この領域の¹H の帰属は¹H-¹H COSY、¹H-¹H TOCSY 測定および標品とのケミ カルシフトとの比較から行った。¹H-¹H COSY は隣との繋がり、¹H-¹H TOCSY は一連の繋が りを調べる時に用いる測定方法である。結果を以下に示す。

TF : H4a ($\delta 2.86$ ppm dd J=17.0 4.5Hz), H4b ($\delta 2.75$ ppm d J=17.0Hz)

H4'a ($\delta 2.87$ ppm dd J=17.1 5.9Hz), H4'b ($\delta 2.74$ ppm d J-17.1Hz)

TFG : H4a (δ3.00ppm dd J=17.5 3.5Hz), H4b (δ2.94ppm d J=17.5Hz)

H4'a ($\delta 3.01$ ppm dd J=16.9 4.3Hz), H4'b ($\delta 2.93$ ppm d J-16.9Hz)

TFの¹H-¹H COSYスペクトルからH2とH3、H3とH4、H2'とH3'、H3'とH4'の結合が、さらに ¹H-¹H TOCSY スペクトルからH2からH4とH2'からH4'の一連の繋がりが確認された。TFGに おいてはCOSYスペクトルからはH2とH3、H3とH4、H4'とH3'、H3'とH2'、H2'とH9"、H9" とH10"に結合が、さらに¹H-¹H TOCSYスペクトルからはH2からH4までおよびH4'からH10" までの一連の繋がりが確認できた。この結果をFig.1-5 (B, C) に示した。

紅茶は緑茶を発酵させて作るが、この過程で緑茶の主成分であるカテキンが酵素により酸 化されてカテキンが二つ、三つと結合したものができる。主なものはテアフラビン(TFs)、テ アルビジン(TRs) などである。テアフラビンは紅茶の発酵過程でカテキンの二量体化から生 成し、紅茶の葉に1-2%含まれる。テアフラビン(TF)、3-没食子酸テアフラビン、3'-没食 子酸テアフラビン、3,3'-ニ没食子酸テアフラビン(TFG) などがある (57)。テアフラビンに は、7員環のベンゾトロポロン (benzotropolone) 環があり、特徴的な色と味を決める。4種 の紅茶の中で、UDA、MEDA、YATA でのテアフラビンのNMR 観測は難しかった。しかし RAN からは明らかにTFとTFGが主な構成成分であることが解る。これらの成分がRAN の特 徴的な色と味を決めていることが示唆される。

テアルビジンは紅茶の葉に10-20%含まれ、カテキンがもっと酸化されていくつも結合 したものであるが、その化学構造は明らかにされていない。際立った酸性度と水溶性で赤み を帯びた茶色あるいは銅色で収斂性があり苦い味がテアルビジンの特徴である (58)。テアル ビジンの化学構造はN. Kuhnert (59) によって報告されているが本研究の結果と一致している。 Fig. 1-6 にテアルビジンの一般的構造と¹H-¹H TOCSY スペクトルを示す。H4' から H10"ま でと H2 から H4 までの一連の繋がりが観測できる。

Fig. 1-6 紅茶YATAのTOCSY スペクトルおよびテアルビジンの構造式 と TOCSY 相関 (H↔H)

(1-3-2)¹HNMR による紅茶の多変量解析 (51-52)

PCA解析では4種の茶葉に違いが見られなかった。違いを明らかにするためにPLS-DAモ デリングを適用し、PLS-DA 解析を行った。PLS-DA のスコアプロット (Fig. 1-7)の結果、 RANと他の3種類の紅茶UDA、MEDA、YATAがトータル偏差56%で明らかに分離したこと から、RAN から集められたスペクトルは他の3種から集められたスペクトルと相当に異 なっていることを示唆していた。つまりRANと他の3種の紅茶の化学組成が異なっているこ とを反映していた。標高の違いによって分離した潜在的成分はPLS-DA のローデングS-プロ ット (Fig.1-8) を使って特定した。バゲット積分値が増加するか減少するかによっての寄与 に関係し、4つの典型的な成分、TFs (theaflavins)、カフェイン、テアニン、TRG を特定した。 Fig.1-3 で示された HNMR スペクトル領域において特別なケミカルシフトを持つピークの バケット積分値の増加あるいは減少に関係する成分は同定される。積分強度の大きな変化に 関係するケミカルシフトの変数はPLS1 軸の中心から離れることを示している。ローデング S- プロット解析の結果、2つの成分TFs とTRG はPLS1 においてRAN と他の3種の紅茶と 違いに最も関与した。これらの成分変数に関係する積分強度を Fig. 1-9 に示す。TF (2.75 ppm) とTFG (2.94 ppm)の積分変化はRAN でのみ観測された。加えて、 RAN のテアニン (3.19 ppm) とカフェイン (3.77 ppm) はUDA, MEDA, YATA に比べて高いレベルを示した (Fig.1-9 C,D)。 テアニン とカフェイン の量は明らかに栽培された標高と関係している。こ れらは低い標高では減少している。一方、UDA、MEDA、YATA のTRG (3.54 ppm)の積分 強度はRAN に比べて高い値を示している。これらの結果はRAN と他の3種の紅茶において PLS-DA スコアプロットでのPLS1 の分離が2つの成分に主に起因していることを示してい た。TF とTFG そしてPLS-DA スコアプロットでのUDA、 MEDA、 YATA の分離は3つの 成分TRG, カフェイン, テアニンに関係していた。

Fig. 1-7 RAN, UDA, META, YATAの紅茶¹H NMRからのPLS-DA スコアプロット

Fig. 1-8 RAN, UDA, META, YATAの紅茶¹H NMRからのPLS-DAローデングS-プロット

Fig. 1-9 ¹H NMRから同定されたRAN, UDA, META, YATAの組成成分の積分強度 (A) TF (2.75 ppm), TFG (2.94ppm), (B) TRG (3.54ppm), (C) theanine (3.19ppm), (D) Caffeine (3.77ppm)

1-4 結論

4種の紅茶の主成分の変化は栽培された標高の違いにより影響されていた。TF、TFG、テ アニン、カフェインそしてTRG 組成は栽培された茶葉の標高の違いによってかなり異なっ た。(Fig. 1-9) RAN だけに高いレベルで見つかった成分は発酵の過程でカテキンの重合に よって生成されるTF とTFGであった。4つの栽培地域の間で、UDA、MEDA、YATA 中の TRG の量はRAN より高く、一方TF とTFG はRAN だけで見つかった。それぞれの工場で の発酵過程はほとんど独立していて、異なった標高から生じるある種のファクター、酸素レ ベル、湿度、温度のような発酵条件に影響を与えるかもしれない。結果として紅茶の構成成 分に違いが生じる。それゆえ、UDA、MEDA、YATA のTRG はTF、TFG の形成をとうし てカテキンの酵素触媒酸化反応から生じたとも考えられる。RAN の製造において1900m以上 の標高での不十分な酸化が少ない量のTRG に関係してTF およびTFG を生成した原因かも 知れない。発酵過程の条件、加えて生の葉の構成成分が紅茶の化学的な成分を特徴づけると 考えられる。今回ウーロン茶の分析は行わなかったがRANの色あいはウーロン茶と似ている。 緑茶を部分的に発酵させるウーロン茶と関連しているかもしれない。

本研究にて標高差の異なる4種の紅茶葉の成分の違いを¹H NMR スペクトル多変量解析 (PCA および PLS-DA 解析)を行うことで特徴づけることができた。さらに、1次元および 2次元 NMR により標高差に影響する¹H NMR スペクトルのピークの構造を明らかにするこ とができた。紅茶は生産地の標高によって品質が大きく異なるが、本手法によって紅茶葉の 生産地の標高と紅茶成分との関係を明らかにすることができた。今後、食品分野において品 質管理・評価等への利用に多いに期待できる。 文献

- T. Nishio, M. uami, T. Wada, Y. Sugimoto, H. Senou, W. Komori, C. Sakuma, T. Hirano, W. Hakamata, M. Tashiro, *Carbohydrate Research*, 2013, 382, 108
- Y. Tamai, K. Miyatake, Y.Okamoto, Y, Takamori, K. Sakamoto, S. Minami, *Carbohydr. Polym.* 2003, 54, 251
- 3. C. X. Tu, R. X. Zhang, X. J. Zhang, T. Huang, Arch. Dermatol. Res. 2009, 301, 549
- 4. T. Mammone, D. Gan, C. Fthenakis, K. Marenus, J. Cosmet. Sci. 2009, 60, 423
- T. Hirano, T. Wada, S. Iwai, H. Sato, M. Noda, M. Juami, M. Nakamura, Y. Kumaki, W. Hakamata, T, Nishio, *Carbohydr. Res.* 2012, 353, 27
- H. Sato, S. Yokochi, T. Kasama, T. Hirano, W. Hakamata, T. Nishio, J. Appl. Glycosci. 2012, 59, 153
- 7. K. Furihata, S. Shimotakahara, M. Tashiro, Magn. Reson. Chem. 2008, 46, 799
- 8. K. Furihata, S. Shimotakahara, Y. Shibusawa, M. Tashiro, Magn. Reson. Chem. 2009, 47, 971
- 9. K. Furihata, S. Shimotakahara, Y. Shibusawa, M. Tashiro, Anal. Sci. 2010, 26, 1107
- M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, M. Goedert, *Nature.*, 388, 839(1997).
- 11. T. Nonaka, T. Iwatsubo, M. Hasegawa, Nippon Rinsyo, 62, No 9, 1623(1999).
- 12. P. H. Weinreb, W. Zhen, A. W. Poon, K. A. Conway, P.T. Lansbury, Jr. *Biochemistry*. **35**, 13709(1996).
- 13. T. S. Ulmer, A. Bax, N. B. Cole, R. L. Nussbaum, J. Biol. Chem. 280, 9595 (2005).
- K. Ueda, H. Fukushima, E. Masliah, Y. Xia, A. Iwai, M. Yoshimoto, D. A. Otero, J. Kondo, Y. Ihara, T. Saitoh, *Proc. Natl. Acad. Sci. U.S.A.* 90, 11282 (1993).

15. V. N. Uversky, J. Li, A. L. Fink, J. Biol. Chem. 276, 10737 (2001).

- M. H. Polymeropoulos, C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia, A. Dutra, B. Pike, H. Root, J. Rubenstein, R. Boyer, E. S. Stenroos, S. Chandrasekharappa, A. Athanassiadou, T. Papapetropoulos, W. G. Johnson, A. M. Lazzarini, R. C. Duvoisin, Di, G. Iorio, L. I. Golbe, R. L. Nussbaum, Science. 276, 2045 (1997).
- R. Kruger, W. Kuhn, T. Muller, D. Woitalla, M. Graeber, S. Kosel, H. Przuntek, J. T. Epplen, L. Schols, O. Riess, Nat. Genet. 18, 106 (1998).
- J. J. Zarranz, J. Alegre, J. C. Gomez-Esteban, E. Lezcano, R. Ros, L. Ampuero, L. Vidal, J. Hoenicka, O. Rodriguez, B. Atares, V. Llorens, E. Gomez, Tortosa, T. del, Ser, D. G. Munoz, J. G. de, Yebenes, Ann. Neurol. 55, 164 (2004).
- M. Tashiro, M. Kojima, H. Kihara, K. Kasai, T. Kamiyoshihara, K. Uéda, S. Shimotakahara, Biochem Biophys Res Commun. 369, 910 (2008).
- 20. M. J. Volles, S. J. Lee, J. C. Rochet, M. D. Shtilerman, T. T. Ding, J. C. Kessler, P. T. Lansury, Jr. *Biochemistry*. 40, 26, 7812 (2001).
- 21. R. Cappai, S. L. Leck, D. J. Tew, N. A. Williamson, D. P. Smith, D. Galatis, R. A. Sharples, O. C. Curtain, F. E. Ali, R. A. Cherny, J. G. Culvenor, S.P. Bottomley, C. L. Masters, K. J. Barnham, A. F. Hill, *FASEB J.* **19**, 1377 (2005).
- 22. C. L. Pham, S. L. Leong, F. E Ali, V. B Kenche, A. F. Hill, S. L. Gras, K. J. Barnham, R. Cappai, *J. Mol Biol.* **387**, 771 (2009).
- 23. E. H. Norris, B. I. Giasson, R. Hodara, S. Xu, J. Q. Trojanowski, H., Ischiropoulos and V. M. Lee. *J. Biol. Chem.* **280**, 21212 (2005).
- 24. VP. Saxena, DB. Wetlaufer, Proc. Nat. Acad. Sci. USA. 68, 969 (1970).
- 25. O. Corcoran, J. C. Lindon, R. Hall, I. M. Ismail, J. K. Nicholson, Analyst, 2001, 126, 2103.
- 26. M. Másson, J. F. Sigurjónsdóttir, S. Jónsdóttir, T. Loftsson, *Drug Development and Industrial Pharmacy*, 2003, 29, 107.

- 27. K. Shikii, S. Sakurai, H. Utsumi, H. Seki, M. Tashiro, Anal. Sci. 2004, 20, 1475.
- 28. C. Dalvit, P. E. Fagerness, D. T. A. Hadden, R. W. Sarver, B. J. Stockman, *J. Am. Chem. Soc.* 2003, *125*, 6108.
- 29. A. Vulpetti, U. Hommel, G. Landrum, R. Lewis, C. Dalvit, J. Am. Chem. Soc. 2009, 131, 12949.
- A. J. Elliott, in *Chemistry of Organic Fluorine Compounds*. II. A Critical Review, (Eds: M. Hudlicky, A. E. Pavlath), ACS Monograph 187, Washington, DC, 1995, pp. 1119
- 31. B. K. Park, N. R. Kitteringham, P. M. O'Neill, Annu. Rev. Pharmacol. Toxicol. 2001, 41, 443.
- 32. D. O'Hagan, D. B. Harper, J. Fluorine Chem. 1999, 100, 127.
- 33. S. A. Wiseman, D. A. Balentine, B. Frei, Crit. Rev. Food Sci. Nutr. 1997, 37 (8), 705
- 34. D. A. Balentine, S. A. Wiseman, L. C. Bouwens, Crit. Rev. Food Sci. Nutr. 1997, 37 (8), 693
- 35. B. Frei, J. V. Higdon, J. Nutr. 2003, 133 (10), 3275S
- D. Lamoral-Theys, L. Pottier, F. Dufrasne, J. Neve, J. Dubois, A, Kornienko, R. Kiss, L. Ingrassia, Curr. Med. Chem. 2010, 17 (9), 812
- T. Kuzuhara, Y. Iwai, H. Takahashi, D. Hatakeyama, N. Echigo, PLoS Curr. Influenza 2009, RRN1052
- 38. C. S. Yang, J. D. Lambert, J. Ju, G. Lu, S. Sang, Toxicol. Appl. Pharmacol. 2007, 224 (3), 265
- 39. J. M. Song, K. H. Lee, B. L. Seong, Antiviral Res. 2005, 68 (2), 66
- 40. Hsu, J. Am. Acad. Dermatol. 2005, 52 (6), 1049
- 41. H. Fujita, T. Yamagami, Nutr. Res. (N.Y.) 2008, 28 (7), 450
- M. J. Davies, J. T. Judd, D. J. Baer, B. A. Clevidence, D. R. Paul, A. J. Edwards, S. A. Wiseman, R. A. Muesing, S. C. Chen, J. Nutr. 2003, 133 (10), 3298S

- 43. M. Fujiwara, I. Ando, K. Arifuku, Anal. Sci. 2006, 22 (10), 1307
- 44. F. A. Van Dorsten, C. A. Daykin, T. P. Mulder, J. P. Van Duynhoven, J. Agric. Food Chem. 2006, 54 (18), 6929
- 45. M. Nakagawa, Jpn. Agric. Res. Q. 1975, 9, 156
- 46. D. J. Crockford, E. Holmes, J. C. Lindon, R. S. Plumb, S. Zirah, S. J. Bruce, P. Rainville, C. L. Stumpf, J. K. Nicholson, Anal. Chem. 2006, 78 (2), 363
- A. Ohno, N. Kawasaki, K. Fukuhara, H. Okuda, T. Yamaguchi, Chem. Pharm. Bull. (Tokyo) 2009, 57 (12), 1396
- W. Pongsuwan, T. Bamba, T. Yonetani, A. Kobayashi, E. ukusaki, J. Agric. Food Chem. 2008, 56 (3), 744–750
- T. A. Clayton, J. C. Lindon, O. Cloarec, H. Antti, C. Charuel, G, Hanton, J. P. Provost, J. L. Le Net, D. Baker, R. J. Walley, J. R. Everett, J. K. Nicholson, Nature 2006, 440 (7087), 1073
- 50. T. A. Clayton, D. Baker, J. C. Lindon, J. R. Everett, J. K. Nicholson, Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (34), 14728
- 51. L. Eriksson, E. Johansson, N. Kettaneh-Wold, S. Wold, Multiand Megavariate Data Analysis; Umetrics Academy: Ume_a, 2001.
- S. Wold, C., A.W.J Dunn, U. Edlund, K. Esbensen, P. Geladi, S. Hellburg, E. Johansson, W. Lindberg, M. Sjostrom, Chemometrics: Mathematics and Statistics in Chemistry; D. Reidel Publishing Company: Dordrecht, 1984.
- A. Ohno, N. Kawasaki, K. Fukuhara, H. Okuda, T. Yamaguchi, Magn. Reson. Chem. 2010, 48 (2), 168
- 54. R. H. Barton, J. K. Nicholson, P. Elliott, E. Holmes, Int. J. Epidemiol. 2008, 37 (Suppl. 1), i31
- 55. J. K. Nicholson, P. J. Foxall, M. Spraul, R. D. Farrant, J. C. Lindon, Anal. Chem. 1995, 67 (5), 793
- 56. S. Sang, S. Tian, R. E. Stark, C. S. Yang, C. T. Ho, Bioorg. Med. Chem. 2004, 12 (11), 3009

- 57. J. W. Drynan, M. N. Clifford, J. Obuchowicz, N. Kuhnert, Nat. Prod. Rep. 2010, 27, 417
- 58. C. T. Ho, S. Sang, J. W. Jhoo, Americal Chemical Society: Washington, DC, 2003; Vol. 867, pp 125
- 59. N. Kuhnert, Arch. Biochem. Biophys. 2010, 501 (1), 37

論文目録・研究業績

主論文を構成する論文

- "Analysis of weak affinity of β-D-fructofuranosyl-(2↔1)-2-acetamido-2-deoxy-α-D-glucopyranoside for yeast β-fructofuranosidase using NMR spectroscopy" <u>C. Sakuma</u>, K. Furihata, T. Nishio, T. Miyakawa, M. Tanokura and M. Tashiro, *J. Carbohyd. Chem.*, 2014, 33, 498-505.
- "Enzymatic synthesis of novel oligosaccharides from *N*-acetylsucrosamine using β-fructofuranosidase from *Aspergillus oryzae*" T. Nishio, M. Juami, T. Wada, Y. Sugimoto, H. Senou, W. Komori, <u>C. Sakuma</u>, T. Hirano, W. Hakamata and M. Tashiro, *Carbohyd. Res.*, 2013, 382, 108-112.
- "Dopamine cannot promote oligomerization of unoxidized α-synuclein" S. Shimotakahara, M. Matsui, <u>C. Sakuma</u>, T. Takahashi, T. Fujimoto, K. Furihata, M. Kojima, S. Seino, T. Machinami, Y. Shibusawa, K. Uéda and M. Tashiro, *J. Biophy. Chem.* 2013, 4, 110-114.
- "Achievement of ¹H-¹⁹F heteronuclear experiments using the conventional spectrometer with a shared single high band amplifier" <u>C. Sakuma</u>, J. Kurita, K. Furihata and M. Tashiro *Magn. Reson. Chem.* (in press)
- "Characterization of tea cultivated at four different altitudes using ¹H NMR analysis coupled with multivariate statistics" A. Ohno, K. Oka, <u>C. Sakuma</u>, H. Okuda, K. Fukuhara, *J. Agric. Food Chem.* 2011, 59, 5181-5187.

学会発表

K. Furihata, <u>C. Sakuma</u> and M. Tashiro, "Observation of oligomerization process of a-synuclein in association with dopamine using NMR spectroscopy" The 55th Experimental Nuclear Magnetic Resonance Conference, March 23-28, 2014, Boston, Massachusetts, USA.

謝辞

本研究を行うにあたり、終始御指導、御鞭撻を賜りました明星大学・理工学部教授 田代 充博士に深く感謝致します。本研究を進めるにあたり、NMR 測定などにおいて様々な御指 導、御助言、御協力を頂きました東京大学大学院・農学生命化学研究科 降旗一夫博士、ま た ITC 測定に際して様々な御助言、御協力を頂きました東京大学大学院・農学生命化学研究 科教授 田之倉優博士ならびに助教 宮川拓也博士に深く感謝致します。

試料提供などにおいて様々な御助言、御協力を頂きました日本大学・生物資源科学部生命 化学科教授 西尾俊幸博士、¹⁹F NMR 測定などにおいて御協力を頂きました元アジレント・ テクノロジー(株) 栗田順一博士に深く感謝致します。

共同研究を通して、親身な御助言、激励、御協力を頂ました元東京薬科大学・薬学部講師 田代櫻子 Ph. D に心より感謝致します。多変量解析研究において、様々な御指導、御協力ま た研究の一部を担当して頂きました国立医薬品食品衛生研究所 福原潔博士(現 昭和大学 薬学部教授)および大野彰子博士に深く感謝致します。