Derivation and Calculation of the Reflection Coefficient for the Single-Slot LCX

Chunyang REN

College of Information and
Communication Engineering, Harbin
Engineering University, Harbin, Heilongjiang, 150001, CHINA
renchunyang@hrbeu.edu.cn
Xiaodong YANG ${ }^{1,2}$
1.School of Information Science

Meisei University, Tokyo, 191-8506, Japan

Keywords: leaky coaxial cable(LCX), reflection coefficient , resonant points

Abstract

In order to suppressing the resonance point of leaky coaxial cable, first we need to calculate the reflection coefficient under the single slot, thereby obtaining a total reflection coefficient of the entire cable. Detailed analysis of the reflection in the case of a single slot, and deduce the reflection coefficient of the single-slot, specific examples are given calculation result and analysis. Finally, there is a simple analysis for the derivation of the total reflection coefficient of the leaky coaxial cable.

1 Introduction

Leaky coaxial cable is usually called LCX for short. It has both the transmission and radiation characteristics, and recently it is widely used to solve information transmission problems in the areas where the wireless communication

2.College of Information and Communication Engineering, Harbin Engineering University,
Harbin, Heilongjiang, 150001, CHINA
Xue PAN
College of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, CHINA

can not work well, such as railway, tunnel and underground store and so on. But nowadays along with the increase of communication period and the frequency band, leaky coaxial cable can not meet the need of larger and larger information transmission capacity, so it is a trend to extend the frequency band of $\operatorname{LCX}{ }^{[1]}$. One way is to inhibit the resonance points. If you make the amplitude of the reflection coefficient in the expansion of the band reduced to communication within the allowable range, these frequencies will be suppressed interference, which can achieve the purpose of the extended band. The key point is to calculate the total reflection coefficient of the leaky coaxial cable, to reaches the purpose of the extended band ${ }^{[2]}$. Literature [1, $2,3,4]$ studied how to suppress the resonance point. However, these papers have focused on how to suppress the resonance point. They have not shown methods to derivation and calculation of the total reflection coefficient of LCX. According to the theory of small reflection ${ }^{[5]}$, we can know that, as long as the total reflection coefficient can be obtained to calculate the single-slot overall
reflection coefficient．Single－slot of leaky coaxial cable is the basic unit of the leaky coaxial cable，plays a crucial role in the parameters for calculating the leaky coaxial cable．In this paper， the detailed process of the specific calculation of the reflection coefficient of the single－slot of leaky coaxial cable，derivation and case count results provide a theoretical basis for the design of the leaky coaxial cable．

2 Single－slot LCX model

Fig． 1 a single slot of leaky coaxial cable schematic
Figure 1 shows a single slot in the leaky coaxial cable．Set the coaxial cable outer surface of the radius b ， inner conductor radius a ，the slot width w and the length $2 l_{0}$ ，the slot for the z－axis angle ξ ．The slot can be divided into finite small parts，each part can be approximated on a plane， each part shown in Figure 2.

Fig． 2 part of the schematic From figure 2 part of the schematic ， we can get sl coordinate system can
get from $z \varphi$ coordinate system by coordinate transformation．Hence

$$
\begin{equation*}
z=l \cos \xi-s \sin \xi \tag{1}
\end{equation*}
$$

3 Derivation the reflection coefficient for the single－slot LCX

Assume $\vec{E}_{1}, \overrightarrow{H_{1}}$ are the slot electric and magnetic field vector． $\overrightarrow{E_{2}}, \overrightarrow{H_{2}}$ are the electric and magnetic field vector of the coaxial leaky cables to the $+z$ or －z direction propagation of the TEM wave．

Fig． 3 single slot leaky coaxial cable analysis schematic
To consider the closed surface by the composition of $S=S_{1}+S_{2}+S_{3}$ ，shown in Figure 3 single slot leaky coaxial cable analysis schematic ，which S_{1} ， S_{2} for the two reference surface of the slot at both ends of the coaxial cable from the slot far enough，the only TEM mode the main component， S_{3} is the coaxial leaky cables internal surface between S_{1} and S_{2} ．S surface passive，according to the reciprocity theorem can be obtained

$$
\begin{equation*}
\int_{s}\left(\overrightarrow{E_{1}} \times \overrightarrow{H_{1}}-\overrightarrow{E_{2}} \times \overrightarrow{H_{2}}\right) d \vec{S}=0 \tag{2}
\end{equation*}
$$

Since the width of the slot is very thin， so we can assume that the electrical field on the slot aperture is only changing in the I－direction and is not changing in the s－direction，therefore
the electrical field E can be decomposed into two components $\overrightarrow{E_{z}}$ and $\overrightarrow{E_{\varphi}}$.
We can get the electrical field ${ }^{[6]}$

$$
\begin{align*}
& \bar{E}(l)=\frac{2 D_{0}}{w \psi \sin \left(2 k l_{0}\right)}\left\{\sin \left[\left(\beta^{\prime}-k\right) l_{0}\right] \exp (j k l)\right. \\
& -\sin \left[\left(\beta^{\prime}+k\right) l_{0}\right] \exp (-j k l) \\
& \left.+\sin \left(2 k l_{0}\right) \exp \left(-j \beta^{\prime} l\right)\right\} \tag{3}
\end{align*}
$$

where

$$
\begin{gathered}
D_{0}=-\left(0.5 j \omega \mu_{0} H_{0} \sin \theta\right) /\left(k_{0}^{2}-\beta^{\prime^{2}}\right) \\
H_{0}=\frac{V_{0} \sqrt{\varepsilon_{r}}}{r_{b} \sqrt{\mu_{0}} \ln (b / a)} \\
\beta^{\prime}=\beta \cos \theta \\
\psi=\int_{-l_{0}}^{l_{0}} \frac{e^{-j k_{0} R}}{2 \pi R} d l, R=\sqrt{l^{2}+(0.5 w)^{2}}
\end{gathered}
$$

l_{0} is the half length of the slot. w is the width of the slot.
We can get the electric and magnetic field expression of coaxial cable ${ }^{[7]}$

$$
\begin{align*}
& \overrightarrow{E_{2}}=\frac{V_{0}}{\ln (b / a)} \frac{\overrightarrow{a_{r}}}{r} e^{-j k_{0} z} \tag{4}\\
& \overrightarrow{H_{2}}=\frac{V_{0}}{Z \ln (b / a)} \frac{\overrightarrow{a_{\varphi}}}{r} e^{-j k_{0} z} \tag{5}
\end{align*}
$$

Where Z is the wave impedance between the outer conductor and inner conductor
By the expression (3) shows that $\overrightarrow{E_{2}}$ only have r-direction, so it contribution to the integral on S_{3} is zero. \vec{E}_{1} can be decomposed into zdirection and ϕ-direction, $\overline{H_{2}}$ is ϕ direction, it contribution to the integral on S_{1} and S_{2} is zero. Hence
we can get the new equation of the equation (2)
$\int_{S_{\text {slot }}}\left(\overrightarrow{E_{1}} \times \overrightarrow{H_{2}}\right) d \vec{S}-\int_{S_{1}+S_{2}}\left(\overrightarrow{E_{2}} \times \overrightarrow{H_{1}}-\overrightarrow{E_{1}} \times \overrightarrow{H_{2}}\right) d \vec{S}$ $=I_{1}+I_{2}$
Where I_{1} and I_{2} separately are the integral on S_{1} and the integral on S_{2}. Tangential component of the reflected wave of $\overrightarrow{E_{1}}, \overrightarrow{H_{1}}$ can contribute to the integration on S_{1} are $\overrightarrow{E_{1 t}}$ and $\overrightarrow{H_{1 t}}$, and we can assume that $\overrightarrow{E_{1 t}}=R \overrightarrow{E_{t}} e^{j \beta z}$, $\overrightarrow{H_{1 t}}=-R \overrightarrow{H_{t}} e^{j \beta z}$
Where $\overrightarrow{E_{t}}, \overrightarrow{H_{t}}$ are the tangential component of TEM , β is propagation constant, R expressed along the z axis positive or negative to the transmission of electromagnetic waves scattering coefficient. Tangential component of the transmission wave of $\overrightarrow{E_{1}}, \overrightarrow{H_{1}}$ can contribute to the integration on S_{2} are $\overrightarrow{E_{1 t}}$ and $\overrightarrow{H_{1 t}}$, and we can assume that $\overrightarrow{E_{1 t}}=T \overrightarrow{E_{t}} e^{-j \beta z}, \overrightarrow{H_{1 t}}=T \overrightarrow{H_{t}} e^{-j \beta z}$
Hence we can get

$$
\begin{aligned}
I_{1} & =\int_{S_{1}}\left(\overrightarrow{E_{2}} \times \overrightarrow{H_{1}}-\overrightarrow{E_{1}} \times \overrightarrow{H_{2}}\right) d \vec{S} \\
& =\int_{S_{1}}\binom{\overrightarrow{E_{t}} e^{-j \beta z_{1}} \times R \overrightarrow{H_{t}} e^{j \beta z_{1}}}{+R \overrightarrow{E_{t}} e^{j \beta z_{1}} \times \overrightarrow{H_{t}} e^{-j \beta z_{1}}} \vec{z} d \vec{S} \\
& =2 R \int_{S_{1}}\left(\overrightarrow{E_{t}} \times \overrightarrow{H_{t}}\right) \vec{z} d \vec{S} \\
I_{1} & =\int_{S_{1}}\left(\overrightarrow{E_{2}} \times \overrightarrow{H_{1}}-\overrightarrow{E_{1}} \times \overrightarrow{H_{2}}\right) d \vec{S} \\
& =\int_{S_{1}}\binom{\overrightarrow{E_{t}} e^{-j \beta z_{1}} \times T \overrightarrow{H_{t}} e^{-j \beta z_{1}}}{-T \overrightarrow{E_{t}} e^{-j \beta z_{1}} \times \overrightarrow{H_{t}} e^{-j \beta z_{1}}} \vec{z} d \vec{S} \\
& =0
\end{aligned}
$$

$$
\begin{equation*}
R=\frac{\int_{S_{s o t}}\left(\overrightarrow{E_{1}} \times \overrightarrow{H_{2}}\right) d \vec{S}}{2 \int_{S_{1}}\left(\overrightarrow{E_{t}} \times \overrightarrow{H_{t}}\right) \vec{z} d \vec{S}} \tag{6}
\end{equation*}
$$

Since the transmission line with the TEM wave electric and magnetic fields are associated with a single value of the voltage wave and current wave．R is the transmission line reflection coefficient．We can get the equation by the equation（1）（3）and the equation（4）（5）into the equation （6）．

$$
\begin{aligned}
& \int_{S_{\operatorname{sta}}}\left(\vec{E}_{1} \times \vec{H}_{2}\right) d \vec{S} \\
= & \int_{S_{s a x}} E(l) \cos \xi \frac{V_{0}}{Z \ln (b / a)} \frac{1}{b} e^{-j \beta z} d S \\
= & \int_{-w / 2}^{w /} \frac{1}{w} e^{j \beta s \sin \xi} \int_{-1}^{l} M(l) \cos \xi \frac{V_{0}}{Z \ln (b / a)} \frac{1}{b} e^{-j \beta l \cos \xi} d l \\
= & \frac{\sin (\beta w / 2 \sin \xi)^{l}}{\beta w / 2 \sin \xi} \int_{-1}^{l} M(l) \cos \xi \frac{V_{0}}{Z \ln (b / a)} \frac{1}{b} e^{-j \beta l \cos \xi} d l
\end{aligned}
$$

$$
2 \int_{S_{1}}\left(\overrightarrow{E_{t}} \times \overrightarrow{H_{t}}\right) \vec{z} d \vec{S}
$$

$$
=2 \int_{S_{1}} \frac{V_{0}}{\ln (b / a)} \frac{1}{r} \frac{V_{0}}{Z \ln (b / a)} \frac{1}{r} d S
$$

$$
=2 \int_{a}^{b} d r \int_{0}^{2 \pi} \frac{V_{0}}{\ln (b / a)} \frac{1}{r} \frac{V_{0}}{Z \ln (b / a)} d \varphi
$$

We can get the reflection coefficient expression of the single－slot LCX that $R=\frac{\sin (\beta w / 2 \sin \xi)}{2 \pi V_{0} \beta w b} \int_{-l}^{l} M(l) e^{-j \beta(l \cos \xi)} d l$ Where $M(l)=w E_{s}(l)$ We can see from the expression of the reflection coefficient for the single－ slot LCX that it have a close relationship with the slot length l_{0} ，slot width ω ，inclination angle ξ ， and the angular frequency ω ．The
following are specific calculations to analysis their relationship．

4 Calculation of the reflection coefficient for the single－slot LCX

When $b=20.65 \mathrm{~mm}, \mathrm{Z}=50$ ，epsir $=1.26$ ， $l_{0}=16.2 \mathrm{~mm}, \mathrm{w}=3.3 \mathrm{~mm}, \mathrm{~V} 0=1, \mathrm{f}=900$ MHz ．We can get Figure 5 the change of reflection coefficient with the change of ξ（sita）．

Fig． 4 the change of reflection coefficient with the change of ξ
From the figure 4，we can get that the reflection coefficient is maximum at $\xi=\pi / 2$ ．And we can get the value from the figure that $|R|=0.0131$ ．Which is same to the literature［6］about the reflection coefficient by obtained from an approximate theoretical analysis at frequency of $900 \mathrm{MHz}^{[6]}$ ．
When $b=20.65 \mathrm{~mm}, \mathrm{Z}=50$ ，epsir $=1.26$ ， $l_{0}=16.2 \mathrm{~mm}, \mathrm{w}=3.3 \mathrm{~mm}, \mathrm{~V} 0=1, \mathrm{f}=900$ MHz ．We can get Figure 5 that the change of reflection coefficient with the change of frequent．From the figure 5 we can get that the reflection coefficient is increased with increasing frequency．As the frequency increases， its wavelength is closer and closer to the length of the slot，arising more and more obvious reflection．Similarly，in

Fig. 5 the change of reflection coefficient with the change of frequent the case of the frequency constant, as the slot length increases, the reflection coefficient will be gradually increased, the actual computation result is indeed the case. However, the resonant characteristic of the single-slot leaky coaxial cable does not reflect the resonance characteristics of the leaky coaxial cable.

5 Analysis of the total resonance point of the LCX

We can get from the small reflection theory that when the value of the modulus of the reflection coefficient of each slot than 1 small lot, the total reflection coefficient can be a good approximation that
$\Gamma_{\text {otal }}=\Gamma_{1}+\Gamma_{2} e^{-2 j \theta}+\Gamma_{3} e^{-4 j \theta}+\cdots+\Gamma_{N} e^{-2(N-1) j \theta}$
Where Γ_{1} is the modulus value of the reflection coefficient of the first slot along the z -axis positive. Γ_{N} is the modulus value of the reflection coefficient of the N-th slot along the zaxis positive. θ is the electrical length of adjacent slots. When $e^{-2 j \theta}=1,4 \pi \frac{f}{f_{0}}=2 k \pi$ where $f_{0}=\frac{c}{\sqrt{\varepsilon_{r}} P}$, the values of total reflectance
coefficient of these frequency points will be maximum.
However, when use the value of the reflectance coefficient for signal-slot LCX at frequency of 900 MHz into the equation (7), and the number of cycles is above 100, the total reflection coefficient will above 1.Which is does not match the theory of reflectance coefficient. Therefore, the equation (7) is not applicable for the number of slots is abundant. We need to get a more precise theoretical result.

Fig. 6 Equivalent analysis for the leaky coaxial cable
The whole cable can be equivalent to a series junction as shown in fig.6. When the incident wave strikes the first junction, a partial reflected wave of amplitude Γ_{1} is produced. A transmitted wave of amplitude T_{21} is then incident on the second junction. A portion of this is reflected to give a wave of amplitude $T_{21} \Gamma_{3} e^{-2 j \theta}$ incident from the right on the first junction. A portion $T_{12} T_{21} \Gamma_{3} e^{-2 j \theta}$ is transmitted, and a portion $T_{12} T_{21} \Gamma_{3} \Gamma_{2} e^{-2 j \theta}$ is reflected back toward second junction ${ }^{[5]}$. However, taking into account the reflection coefficient calculation quantity and the value of refection coefficient for signal-slot LCX, the higher powers of the part can be negligible. Considering the value of refection coefficient for signal-slot LCX at frequency of 900 MHz , the number of slot more than 1000 will
contribution to the total reflection coefficient．Therefore each slots only once contribution to the total coefficient reflection．According to the analysis of the above two slots， we can obtain the total reflection coefficient．
$\Gamma_{\text {tootl }}=\Gamma_{1}+T_{12} T_{21} \Gamma_{3} e^{-2 j \theta}+T_{21} T_{43} \Gamma_{5} T_{34} e^{-2 j \theta} T_{12}{ }^{-2 j \theta}+\cdots$ where $\Gamma_{1}=\Gamma_{3}=\Gamma_{5}=-\Gamma_{2}=-\Gamma_{4}=-\Gamma_{5}$

$$
T_{21}=T_{43}=T_{65}=-T_{12}=-T_{34}=-T_{56}
$$

So，we can get that

$$
\begin{equation*}
\Gamma_{\text {total }}=\Gamma_{1} \frac{1-T_{21}^{2 N} e^{-j 2 N \theta}}{1-T_{21}^{2} e^{-j 2 \theta}} \tag{8}
\end{equation*}
$$

We can get the relationship of total reflection coefficient with frequency when use the reflection coefficient for the signal－slot LCX into the total reflection coefficient．We can know from the equation（8）that the resonance point appears at $f=0.5 k f_{0}$

$$
\left(f_{0}=\frac{c}{\sqrt{\varepsilon_{r}} P}, k=0,1,2 \ldots\right) . \text { As the }
$$

frequency increases，the reflection coefficient for the signal－slot LCX is gradually increased，and the total reflection coefficient will gradually increase at the resonance point．The paper［1，2，3，4］have detailed description of how to suppress the resonance point．

6 Conclusion

In this paper，detailed derivation of the analytical expression of the reflection coefficient for signal－slot LCX，and example count and analysis the expression．We can get that with the increase of the inclination angle of slot， the reflection coefficient is gradually increased，the maximum at the perpendicular to the leaky coaxial cable，but as the frequency increases， the reflection coefficient is also increased，and these are consistent with the practical．With the increase in
the width or the length of slots，the reflection coefficient is also increasing． Secondly，theoretical analysis and derivation of the follow－up to the total reflection coefficient，deduced the total reflection coefficient expression， whose error is relatively small． Providing a theoretical basis for the further design of leaky coaxial cable．

7 References

［1］Linlin，F．，et al．，Research on the Radiation Field of Wide－Band Leaky Coaxial Cable，in Wireless Communications Networking and Mobile Computing（WiCOM）， 2010 6th International Conference on．2010．p． 1－4．
［2］Sakabe I．Design of VHF－UHF super－wideband leaky coaxial cable（LCX）［J］．International Wire \＆ Cable Symposlun Proceedings， 1994. ［3］Chi－Hyung Ahn，Dong－Woo Yi， Design of a Radiated－mode Multislot Leaky Coaxial Cable［J］．Microwave And Optical Technology Letters ．Vol． 45，No．4，May 202005.
［4］JunHong Wang，Kenneth K．Me． Thoery and Analysis of Leaky Coaxial Cables with Periodic Slots［J］．IEEE Transactions on Antennas and Propagation，2001，149（12）：1723－ 1731p．
［5］R．E．Collin，Foundations for Microwave Engineering［M］．NewYork：
Mc－Graw－Hill，1992，ch．3，5 and 8.
［6］Jun－Hong W，Shui－Sheng J．
Analysis of the field distribution stimulated on the slots of the leaky coaxial cables：Antennas and Propagation Society International Symposium，1997．IEEE．， 1997 Digest， 1997［C］．13－18 Jul 1997.

