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Abstract

I examine demand revelation mechanisms in many-to-one matching problems. Each agent

announces an assignment or a set of assignments without indicating rankings. I show that

any subcorrespondence of the Pareto choice rule is not Nash-implementable by any demand

revelation mechanism. A stronger notion of Maskin monotonicity plays a crucial role for this

impossibility result.
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1 Introduction

Two-sided matching problems consist of
two finite disjoint sets of agents. Agents on
one side need to be matched with agents on
the other side.
of these problems, a matching is described

In the classical formulation

only by the identities of the partners, that is,
which pairs are matched. Hatfield and Mil-
grom (2005) develop a more general class
of many-to-one matching problems in which
matches are characterized by contracts as well
as by who is matched. A contract specifies
terms and conditions regarding the match, for
instance, stipend, working hours, wage, etc.
A well-known practical matching proce-
dure is the deferred acceptance algorithm pro-
posed by Gale and Shapley (1962), and gen-
eralized by Hatfield and Milgrom (2005) to
apply to matching with contracts. For ex-
ample, in the context of the labor market
for medical interns without contracts, the
doctor-proposing deferred acceptance algo-

rithm finds a matching through the following
steps. At the first step, every doctor applies
to his favorite acceptable hospital (if there is
no such hospital then he remains unmatched).
Each hospital tentatively assigns its seats to
the favorite subset of doctors from the pool of
applicants; the remaining doctors are rejected.
At the kth step, those applicants who were re-
jected at step k — 1 apply to their next best ac-
ceptable hospitals. Each hospital tentatively
assigns its seats to the most favorable subset
of doctors from the pool of new applicants
and those tentatively assigned to that hospi-
tal in the previous step; the remaining doctors
are rejected. The algorithm terminates when
every doctor is either held tentatively by some
hospital or has been rejected by every hospital
that is acceptable to him. In this kind of algo-
rithm, participants in the market are asked to
submit rankings or preferences used for de-
termining the final matching. However, when
the preferences of both sides are private in-



formation, it is known that reporting the true
preference profile is neither a dominant strat-
egy equilibrium nor a Nash equilibrium of the
preference revelation game induced by the de-
ferred acceptance algorithm (see Roth 1982,
Theorem 3).

On the other hand, I consider a class of
mechanisms refereed to as demand revelation
mechanisms. Agents submit lists of preferred
matchings without indicating priorities in de-
mand revelation mechanisms. I call a mecha-
nism in which proposals are restricted to sin-
gle matching a demand revelation mechanism
with final offers. I call a mechanism in which
proposals are not restricted to single match-
ing a demand revelation mechanism with gen-
eral offers. It can be interpreted as the sit-
uation in which agents submit the most pre-
ferred matchings with equal priority. I com-
pare the set of non-cooperative outcomes with
a set of Pareto efficient allocations with re-
spect to the true pnreferences which are pri-
vate information. It is shown that any subset
of Pareto efficient allocations can not be im-
plementable in Nash equilibrium of demand
revelation games. As a result, I obtain the im-
possibility result of Nash-implementability of
the core correspondence.

2 Environments

The set of finite agents is denoted by I,
where # 1 > 3. There is a partition of I,
denoted by (D, H). Both D and H are non-
empty. The two disjoint sets are interpreted as
the set D of doctors and the set H of hospi-
tals. Denote by d and h generic elements of
D and H, respectively. Agents on one side of
the market need to be matched with agents on
the other side.

Denote by X a non-empty finite set. An
element of X is called a contract. Each non-
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empty subset X’ of X is called an allocation,
which is a collection of contracts. Each con-
tract is bilateral in the sense that each contract
is associated with a pair of agents in D x H.
For each contract x € X, the ordered pair
(zp,xpr) represents a pair of agents zp € D
and zy € H, associated through the contract
x. Abusing notation, z; € {xp,zy}. Agent
7 is involved in an allocation X" if there exists
some contract z € X’ such that 7 = 4. Oth-
erwise, agent 7 is outside X’. Each agent may
stay unmatched. I refer to the situation where
an agent is unmatched as the null contract.
The null contract matches an agent to himself.
Denote by () the null contract. The null con-
tract can be assigned to several agents. The
set A = 2% will be referred to as the alloca-
tion space.

The distinction between agents in D and
H comes from the difference in definition of
consumption sets. Agents have private in-
formation about their preferences over pos-
sible matches. Roughly speaking, agents in
D have preferences over individual contracts,
whereas agents in H have preferences over
groups of contracts. For each agent d € D,

his consumption set is defined by

Xa={{z} € X |xp = d} U{0}.

The fact that X; consists of singletons
means that each agent d € D can sign at most
one contract. Each agent d € D has a pref-
erence relation Ry defined on X);, which is a
linear order.! In contrast, each agent h € H
has a more complicated consumption set. For
each agent h € H, his consumption set is de-

! A preference relation is a linear order if it is com-
plete, transitive and antisymmetric.
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fined by

Xh:{Bth\xH:h:yhand
[tp = yp implies x = y] for every
x,y € B} U{0}.

Each agent h can sign only one contract with
each agent involved in By,. Each agent h € H
has a preference relation R;, defined on A7},
which is a linear order. Lastly, for each agent
1 € I, denote the associated strict part of R;
by P; and indifference by I;.

I will denote the most preferred set of agent
i € I under R; by Cg,(X’) for each alloca-
tion X’. Notice that for each agent d € D,
his chosen set Cr,(X’) is either a single-
ton of the null contract or a singleton of a
contract, whereas the chosen set Cg, (X') of
agent h € H is a subset of the contracts asso-
ciated with him within the allocation X’.

The literature on many-to-one matching
problems introduces a certain restriction to
preferences of agents in H.

Definition 1. For each agent h € H, his pref-
erence relation Ry, is weakly substitutable® if
for every Bj € A&}, and every B C X such
that B; C B} and xy = h for every x € By,
B},N Cr, (B}) € Cr,(B}).

Denote by R = [[,.; Ri the weakly substi-
tutable preference domain.

For each allocation X’ € A and each pref-
erence profile R € R, denote Rp = (Rg)4
where d involved in X', and Ry = (Rp)p,
Both profiles
Rp and Ry are constructed with respect

where h involved in X'.

2 A stronger notion of weak substitutability is in-
troduced by Hatfield and Milgrom (2005). They
request By, N Cr, (By) C Cr, (B},) whenever
B;, C Bjl C A. The inclusion B, C Bj in
the allocation space rather than in his comsump-
tion set does not necessarily imply that {z € By, |
zy =h} C{z € By, | zu = h}.
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to X/, but I do not make this depen-
dence explicit. Consider any preference
profile # &€ 'R. For each allocation
X' € A, denote Cr,(X') = U{C’Rd(X’) |

zp = d forsome z € X'} and Cg, (X') =
U{CRh(X/) | g = hforsomex € X'}

Then, an allocation X’ is balanced for R if
Cry(X') = Cary (X') = X".

My analysis takes a choice rule or perfor-
mance standard as a given. A choice rule
@ is a correspondence of R into A that as-
sociates with each preference profile a set of
balanced allocations regarded as desirable for
the profile. In other words, each element
X' € @(R) is a socially desirable alloca-
tion under the preference profile R with re-
spect to . A balanced allocation X’ for R
is said to be Pareto efficient for R if there is
no balanced allocation X” for R that Pareto
dominates X': Cg,(X")R;Cr,(X’) for ev-
ery agent i and Cr, (X" )P,Cr,(X') for some
agent 7. The relation o pr of R into A is re-
ferred to as the Pareto choice rule. 1 seek se-
lections from the Pareto choice rule. Denote
by Z C 27\ {(} the set of admissible coali-
tions. A balanced allocation X" is said to be
in the core for R if there is no balanced allo-
cation X" with respect to coalition .J € 7 that
weakly blocks X' via coalition J under R,
where .J is the set of agents involved in X".3
Denote by ¢ (R) the core for R. The relation

3 A balanced allocation X’ is said to be in the
weak core for R if there is no balanced alloca-
tion X" with respect to coalition J € Z such
that Cr, (X" )P,Cr, (X') for every ¢ € J, where
J is the set of agents involved in X”. In other
words, there is no balanced allocation with respect
to coalition J that strongly blocks X' via coalition
J under R. Denote by ¢w ¢ (R) the weak core for
R. It is known that the two cores coincide in mar-
riage problems, but not in the college admissions
problems (see Roth and Sotomayor 1990, Proposi-
tion 5.36).



wc of R into A is referred to as the core cor-
respondence. Notice that pc(R) C vpr(R)
foreach R € R.

The reason of the imposition of weak sub-
stitutability is the following.

Remark 1. The core correspondence ¢ is
non-empty-valued if preferences are weakly
substitutable.*

3 Demand Revelation Games

The mechanism designer desires the out-
comes described by a choice rule but does
not know individual preferences which are
private information of the agents. The task
of the mechanism designer is to construct
a set of rules, which is independent of
private information, that achieves the pre-
scribed socially desirable allocations as non-
cooperative equilibrium outcomes. An or-
dered pair (M, g) is called a mechanism if g
is a function of M into the allocation space
A, and M = [];c;
empty set for each agent 7.

M;, where M; is a non-
The Cartesian
product M is called the message space. Each
element m € M is called a message profile.
Given a preference relation R, the ordered
pair (M, g) induces a game in normal form.
A triplet (M, g, R) is called a game if (M, g)
is a mechanism and R € R.

For each message profile m = (m_;, m;),
denote by g;(m—;, m;) = {z € g(m_;,m;) |
x;y = i} the set of contracts that agent
i receives at the allocation g(m_;, m;).
Given a game (M, g, R), a message profile
m = (m—;,my;) is called an equilib-
rium or a pure strategy Nash equilib-
rium for (M,g,R) if for every agent

i, gi(m—i,m;) Ri gi(m—;,m;) for every

A~

m; € M;, where the notation (m_;, ;)

4 The proof is available upon request.
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stands for the message profile obtained from
the message profile (m_;, m;) by replacing
its component m; by ;. The set of equilibria
for (M, g, R) is denoted by N0 (R). A
mechanism (M, g) Nash-implements a choice
rule ¢ if the equilibrium outcomes coincide
with the set of p—optimal outcomes for
(M, g, R), that is, g(N(ar,4)(R)) = o(R) for
every R € R. The expression g(N(as,)(R))
stands for the image of the set of equilibria;

9N g (R)) = (Jlg(m) | m € Niarg)(R)}.

The set of equilibrium mes-

sages can be decomposed as

Nog)(R) = ﬂ/\/(lM,g)(Ri) for every
i€l

R € R, where N3, 1(R;) = {m € M |
gi(mi, m_;) R; gi(m_;,my;) for every 1, € M;}
is the graph of agent ¢’s best response cor-
Notice that each
correspondence N‘(iMy) of R; into M de-

respondence at R;.
pends only on his own type R;. In other
words, the correspondence /\/( Mg Of R
into M is a coordinate correspondence.’
The following figure depicts the notion of

Nash-implementation.

@(R) = (90N g)(R)

ReR >>X'eA
N (R) 9(m)
me M
Figure 1: Nash-Implementation of ¢ by
(M, g)

® This is a privacy requirement on the equilibrium
message correspondence (see Mount and Reiter
1974).
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3.1 Mechanisms with Final Offers

In this subsection, I consider a class of
mechanisms in which a message consists of
a single contract. Each agent can submit at
most one acceptable assignment, that is, I re-
strict my attention to the class of mechanisms,
where M; = A for each agent i. I consider
the following class of outcome functions. For
each message profile m = (m_;,m;) € M,
denote by g;(m_;,m;) the set of contracts
that agent ¢ must consume:

( ) m; form,; € Fl(m,l)
() =

Jilll—i, i 0 otherwise

for some correspondence
Ii(m—;) C X;\ {0}. The outcome function

is defined by
gm-i,mi) = |J
gi(m—im;)#0
The ordered pair (M, g) is called a demand
revelation mechanism with final offers. In

gi(m—i,m;).

any demand revelation mechanism with fi-
nal offers, the message space is defined by
M = [[;c; &i. and the attainable set of agent
i is given by Ij(m_;) U {0}.
no particular restriction to the constraints
(I=i(), I3 ().

The following theorem and corollary show

There is

that no matter how I construct constraint cor-
respondences (I'_;(+), I;(+)), it is impossible
to achieve any set of Pareto efficient alloca-
tions and, in particular, the core.

Theorem 1. Any subcorrespondence of the
Pareto choice rule is not Nash-implementable
by any demand revelation mechanism with fi-
nal offers.

Proof. See Appendix 1. 0
Corollary 1. The core correspondence ¢ is

not Nash-implementable by any demand rev-
elation mechanism with final offers.
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3.2 Mechanisms with General Offers

In the rest of the present note, I con-
sider a more general message space consist-
ing of multiple assignments. Each agent
can submit a list of contracts without in-
dicating priorities. The message space of
each agent ¢ is given by M; = {m; |
m; C X; \ {0} orm; = 0}.

following class of outcome functions. For

I consider the

each message profile m = (m—_;, m;) € M,
denote by g;(m_;, m;) the set of contracts
that agent ¢ must consume:

gi(m—;, m;)
. {BZ for B; € m; and B; € Fi(m_i)

() otherwise

for some non-decreasing correspondence
Ii(m—;) C X\ {0}: Ii(m.;) C Ii(m—;)
with m’; € m_,;. Accompanied by the ex-
tension of the message space, I impose the
following restriction to constraint correspon-
dences. A profile (I'_;(+), I';(+)) of constraint
correspondences is said to satisfy the indepen-
dence of irrelevant contracts if for each agent
i and a pair of message profiles (m_;, m;)
and (m’_;,m}), if (1) B; € m;, C m,; and
B; € Fi(m_i), and (2) Fz(m'_z) - Fi(m_i),
then B; € I;(m’_;). The outcome function is
defined by

glm_i,mi) =

gi(m—;,m;)#0

gi(m—i, m;).

The ordered pair (M, g) is called a demand
revelation mechanism with general offers if
the associated constraint correspondences are
non-decreasing and independent of irrelevant
contracts. The attainable set of each agent 7 is
given by I';(m_;)U{(} as in the previous sub-
section. The following theorem examines ef-
fects of the flexibility of announcements due
to the extension of the message space.



Theorem 2. Any subcorrespondence of the
Pareto choice rule is not Nash-implementable
by any demand revelation mechanism with
general offers.

Proof. See Appendix 2. O

Corollary 2. The core correspondence ¢ is
not Nash-implementable by any demand rev-
elation mechanism with general offers.

Appendix 1: Proof of Theorem 1

Proof. 1 shall show that a necessary condi-
tion for Nash-implementation of any subcor-
respondence of the Pareto choice rule by a de-
mand revelation mechanism will not be sat-
isfied over the weakly substitutable prefer-
ence domain. A stronger notion of Maskin
monotonicity appeared in Sjostrom (1996)
plays a crucial role.® I introduce some no-
€ A and
each preference relation R; € 'R;, define

tions. For each allocation X’

agent i’s lower contour set at X’ under R;

by Li(X', R;) = {B; € & | Cr,(X")R;Bi}.

Define A9(X') = (| LiX' Ry,
Rep~1(X')

where o (X)) ={R e R| X' € p(R)} is

the contour set of ¢ at X’. Then, a

choice rule ¢ 1is strongly monotonic if
for every allocation X' €
R e R,if X' € p(R)=

A and every

U »(R) and
ReR
A?(X') C Li(X', R,) for every agent 4, then

X' € o(R)]

6 Sjostrom (1996) analyzes exchange economies
with perfectly divisible goods. The model of this
note can be considered as an exchange economy
with indivisible goods.

7 Strong monotonicity implies Maskin monotonic-
ity. A choice rule ¢ is Maskin monotonic if for ev-
ery allocation X’ € A and every (R, R') € R x
R,if X' € o(R) and L;(X', R;) C L;(X', R;)
for every agent 4, then X’ € ¢(R'). See Maskin
and Sjostrom (2002) for further arguments about
Maskin monotonicity.
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The proof consists of two steps.

Step 1. If a choice rule ¢ is Nash-
implementable by a demand revelation mech-
anism with final offers, then ¢ is strongly

monotonic.

Proof  of  Step 1. Consider any
R €R. Suppose that X’ € ¢(R) and
AP(X')C Ly(X',R}) for every agent i.
I shall show that X' € @(R'). By the
hypothesis, there exists a demand revela-
tion mechanism with final offers (M, g)
that implements ¢ in Nash equilibrium.
Since o(R') = g(Narg) (R')), it suffices
to find some equilibrium message profile
m* € Ny (R') such that g(m*) = X'. Set
m; = Cg,(X') for every agent i. I need some
preparation before proving the requirements
of such message profile m* = (m*;, m}).
Consider any R € ¢ Y(X’). Since
X' €pR) = gWNarg(B). it fol-
lows that X' = g(mf, mF) for
some Then,

Zi
(mf;,mf) € N g (R)-

{gi(m%;,n;) | mie Mi} C Li(X', R;)

holds for every agent <.

Claim 1. mf I; m} for every agent i. More-

over, mZR

X'.

= m; for every agent i involved in

Proof of Claim 1. Recollect that
either gi(mf, mE) =mlt +£ 0 or
gi(mP, mE)y =0 by deﬁnltlon of the
mechanism with final offers. Consider first
any agent ¢ involved in X’. Tt is always

possible to be unmatched by submitting

m; = () if he prefers the null contract to

gi(mf,,mE) = mE. Therefore, it must be

the case that Cg, (X')= g;(m%,, mF) = mE,
R

and hence m;
that mﬁ Iim;.

Each agent 7 outside X’ is assigned to the
mP, mPk) = 0, and

—7

= m;. Of course, this implies

null contract, that is, g;(
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som; = Cg,(X") = 0. It remains to show
that mf I; ) for any agent i outside X’. By
submitting the null contract (), the feasibility
requirement such as ) & I Z(mi) yields that
he must be unmatched. Therefore, mf L0,
and hence mZR I; m;‘.g This establishes the

claim.

In what follows, without loss of generality,
I may assume that m[* = m/ for every agent
i.

Claim 2. g(m*,,m}) = X".

Proof of Claim 2. The assertion is immediate
from the fact that g(m%,, mf') = X', together
with m® = mj for every agent i. This estab-
lishes the claim.

Claim 3. (m*;,m}) € Ng(R).

Proof of Claim 3. Notice that
{gi(m*;,m4) | i € My} = {gi(m®;,m;) |
m; € M;}C Li(X', R;), where the
equality follows from Claim 1. Since

R €
lows

¢ 1(X’) was arbitrary, it fol-
that {gl(m*_l,fnl) | m; € Ml} -

(| Li(X',Ry)= A£(X') € Li(X', R)),
Rep=1(X")
where the last inclusion follows from
the hypothesis. ~ Hence, {g;(m*,,m;) |
mi € M;} C Li(g(m*,,m}), R}) for every

agent ¢. This establishes the claim.

Since the mechanism (/, g) implements ¢
in Nash equilibrium, it follows from Claims 2
and 3 that X’ = g(m*,,m}) € o(R'). This
establishes the step.

Step 2. Any subcorrespondence of the Pareto
choice rule is not strongly monotonic.

8 His best response m?* to mX, is not necessarily
the case that m* = 0 because g;(m%=;, m) = 0
is possible whenever m!* ¢ Fi(mlfi). This is the
reason for which I do not claim the equivalence
between mI® and m/, for every agent i outside X".

Nash-Implementation by Demand Revelation Mechanisms in Two-Sided Matching Models

Proof of Step 2.
Consider the economy with D = {d,da}
and H = {h}. Let X = {z,y,2} with
xp = di = yp and zp = ds. Then,

Consider any ¢ C @pg.

Xdl = {@, {x}v {y}}a ng = {@, {Z}}, and
X = {0, {=}, {y} . {z}, {z, 2}, {y, 2} }.

Notice that {z,y} & A}, Let
X' ={x,z}. Define the following pref-
erence profiles R= (Rg,,R4,, Rn) and

R = (R}, Ra,, Ry), where:

Ry, Ry, Ry

=z} {z} vz} {y}
{y} 0 {z, 2} {z}
0 {y} 0
{z}
{z}
0

These preference profiles R and R’ are

/
Rdl

weakly substitutable indeed.

Claim 4. X' € o(R) but X' & o(R').

Proof of Claim 4. Firstly, the set
of Dbalanced allocations 1is given by
{0}, {2}, {y}. (=}, {22, {,2}}.  With
respect to the preference profile R, it can be
shown that the set of Pareto efficient alloca-
tions coincides with the core. More precisely,

ere(R) = {{z, 2} {y,2}} = ec(R).
Since any choice rule that is Nash-
implementable by a demand revelation

mechanism with final offers is strongly
monotonic, it is Maskin monotonic. By
Theorem 1 in Kara and Sénmez (1996),
any Maskin monotonic subcorrespondence
@ of the Pareto choice rules must be a



supersolution of ¢, that is, oo C ¢.°
Therefore, pc(R) C ¢(R) C ¢pre(R)

holds. Since ppg(R) = @c(R), it follows
that ¢(R) {{z,2},{y,2}}, and hence

= {z,z} € p(R). Moreover, X' & o(R')
because the allocation {y,z} Pareto domi-
nates X' = {x, z} under R’. This establishes
the claim.

It remains to show that
A?(X")C Ly(X',R) for every agent i.
Regarding agent d;, the assertion is trivial
because A7 (X') C Ay, by definition, and
La, (X, 1 ) = {0{z}.{y}} = Aa.
Similar to agent ds. For agent h, notice
that (X", R)) = A, \ {{y,2}}, where
R, = Ry in the preference profile R'.
The fact that {y,z} & Lp(X',Ry), to-
gether with R € ¢ 1(X’), implies that
AP(X) < X, \ {{y,z}}. Therefore,
AY(X') € Ly(X', R}). Hence, I conclude
that the subcorrespondence ¢ is not strongly
monotonic. This establishes the step.

Steps 1 and 2 establish the theorem. O

Appendix 2: Proof of Theorem 2

Proof. Since strong monotonicity of any sub-
correspondence of the Pareto choice rule is
not satisfied over the weakly substitutable
preferences by Step 2 in the proof of Theorem
1, it suffices to show that if a subcorrespon-
dence ¢ C ¢pp is Nash-implementable by
a demand revelation mechanism with general
offers, then ¢ is strongly monotonic. Con-

sider any R’ € R. Suppose that X’ € ¢(R)

9 Kara and Sénmez (1996) show that the core corre-
spondence is the minimal Maskin monotonic sub-
solution of the Pareto and individually rational
rule in one-to-one matching problems without con-
tracts. Their result carries over to many-to-one
matching problems with contracts. In addition, in
this note, the individually rationality of allocations
is incorporated in the balancedness of allocations.
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and A7(X') C L;(X’,R}) for every agent
i. 1 shall show that X’ € o(R’). By the
hypothesis, there exists a demand revela-
tion mechanism with general offers (M, g)
that implements ¢ in Nash equilibrium. Let
R € o1 (X"). Denote an equilibrium mes-
sage profile by (m%,, mf)e N g (R) such
that X'= g(m®%,, mf). Setm; = {Cg,(X")}
for each agent <.

Claim 1. m; C mZ for every agent i in-
volved in X'.

Proof of Claim 1.
agent ]

Consider any
Since
gi(m®,,mE) = Cg,(X’), it must be the
case that Cg,(X’) € mE, and hence

= {Cg,(X")} € mE. This establishes

the claim.

involved in X'

The following claim asserts that any agent
who is unmatched in X’ has no chance to ob-
tain any contract but the null contract.

Claim 2. For every agent i outside
X', there is no m; € M; such that
( i,ml)e NMg)(R) and B; € Fz(mf_zl)

for some B; € m;.

Proof of Claim 2. Suppose, by way of con-
tradiction, that there is a message m; € M;
such that (mf;,m;) € MNug(R) and
B; € TIi(m Ez) for some B; € m;.
R m;) = B; # () because
E).  On the other hand,
R

Then, g;(m
0 ¢ Ii(m

both messages m;

since
and m; are best re-
sponses to mf ; by the hypothesis, it follows
from antisymmetry of his preference R; that
By = g;(m%,,m;). This yields
m;) = 0, a contradiction. This

gz(m_za m

that g;(m?%

_1/)
establishes the claim.

Regarding agent 7 outside X', without loss
of generality, I may assume that mf‘ = {0}
by Claim 2. Since m} = {Cp,(X")} = {0},
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it follows that m} C mf® for every agent i
outside X’. Thus, I assume that m} C mf
for every agent ¢ in what follows.

Claim 3. g(m*,,m}) = X".

Proof of Claim 3. Notice that for every
agent i involved in X', Cg,(X') € m! C ml
and Cg,(X') € ILi(m%).
since [;(-) is non-decreasing, it follows that
I;(m*;)C T'i(m%,). The independence of ir-
relevant contracts of the constraint correspon-
dences yields that Cr,(X') € I3(m*,), and
so gi(m*,,m}) = Cg,(X') for every agent i

In addition,

involved in X’. In contrast, for every agent
i outside X', g;(m*,,m}) = 0 because of
mi = {0}. Thus, g(m?,m!) = X’'. This

establishes the claim.

Claim 4. (m*,,m}) € N(M,g)(R/>'

Proof of Claim 4.
Claim 3 in the proof of Theorem 1.

Similar to the proof of

Since the mechanism (M, g) implements ¢
in Nash equilibrium, it follows from Claims 3
and 4 that X' = g(m*;,m}) € o(R'). This
establishes strong monotonicity of ¢. By Step
2 in the proof of Theorem 1, the choice rule ¢
violates strong monotonicity over the weakly
substitutable preference domain. This estab-
lishes the theorem. 0
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