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Estimation of covariance matrix for Stein’s loss 
on a two-step monotone incomplete sample

Abstract

For a two-step monotone incomplete sample, it is known that Anderson[1]
derived the maximum likelihood estimator for the population mean vec-
tor and the population covariance matrix. Then Tsukada[8] derived the
unbiased estimator for the covariance matrix.

On the other hand, Richards and Yamada[6] estimated the mean vector
based on the loss function. In this article, we deal with the inference
for the covariance matrix based on Stein’s loss function. The estimator,
which has the minimum risk, is proposed, and we compare the risks of the
maximum likelihood estimator with the unbiased estimator, and with the
proposed estimator, respectively.
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1 Introduction

We consider a monotone incomplete data, which was drawn from a multivari-
ate normal population consisting of mutually independent observations of the
following form;

(
X1

Y 1

)
,

(
X2

Y 2

)
, . . . ,

(
Xn

Y n

)
,

(
Xn+1

∗

)
, . . . ,

(
XN

∗

)
, (1)

where each Xi ∈ Rp and each Y i ∈ Rq; (Xi,Y i)
′, i = 1, . . . , n are observations

fromNp+q(µ,Σ), and the incomplete dataXi, i = n+1, . . . , N , are observations
of the first p elements of the same population.

To ensure that all means and variances are finite and that all integrals sub-
sequently encountered are absolutely convergent, we also assume that n > p+2
and N > n ≥ p + q (Chang and Richards[3]). As explained by Yamada, et
al.[9], we also assume that data are missing completely at random to derive the

maximum likelihood estimators µ̂ and Σ̂.
Anderson[1] and Anderson and Olkin[2] derived the maximum likelihood es-

timator (MLE) for µ and Σ, while Kanda and Fujikoshi[5] investigated some of
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their properties. Chang and Richards[3],[4] derived a stochastic representation

for the exact distribution of the MLE µ̂ and Σ̂ for a two-step monotone incom-
plete sample. They obtained an ellipsoidal confidence region for µ, and con-
sidered hypothesis testing for the covariance matrix. Richards and Yamada[6]
studied the Stein phenomenon for a two-step monotone sample. They derived an
improved estimator for µ. Recently, Tsukada[8] derived an unbiased estimator
(UBE) for Σ and investigated its properties.

In this paper, we consider the inference for the covariance matrix Σ us-
ing Stein’s loss function on a two-step monotone incomplete sample. We have
obtained a new estimator and have discussed its properties in Section 2. In Sec-
tion 3, we investigate the accuracy of the new estimator by performing numerical
simulations.

2 Estimation of covariance matrix for Stein’s
loss

Let the missing ratio be τ = (N − n)/N . We decompose µ and Σ as follows;

µ =

(
µ1

µ2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where µ1 and µ2 are a p-element vector and q-element vector, respectively; Σ11,
Σ12 = Σ′

21, and Σ22 are of orders p× p, p× q, and q × q, respectively. We also
define the Schurz complement Σ22·1 = Σ22 −Σ21Σ

−1
11 Σ12.

Define the sample mean vectors

X̄1 =
1

n

n∑

i=1

Xi, X̄2 =
1

N − n

N∑

i=n+1

Xi,

Ȳ =
1

n

n∑

i=1

Y i, X̄ =
1

N

N∑

i=1

Xi,

and the corresponding matrices of the sums of squares and products

A11,n =
n∑

i=1

(
Xi − X̄1

) (
Xi − X̄1

)′
, A12 = A′

21 =
n∑

i=1

(
Xi − X̄1

) (
Y i − Ȳ

)′
,

A22 =
n∑

i=1

(
Y i − Ȳ

) (
Y i − Ȳ

)′
, A11,N =

N∑

i=1

(
Xi − X̄

) (
Xi − X̄

)′
.

The MLE is represented as follows:

µ̂1 = X̄, µ̂2 = Ȳ − (1− τ)A21A
−1
11,n

(
X̄1 − X̄2

)
, (2)
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Σ̂11 =
1

N
A11,N ,

Σ̂12 =
1

N
A11,NA−1

11,nA12, (3)

Σ̂22 =
1

n
A22·1,n +

1

N
A21A

−1
11,nA11,NA−1

11,nA12.

As shown by Kanda and Fujikoshi[5], the expectation of Σ̂ is

E
[
Σ̂
]
=

N − 1

N
Σ+

b0
N

(
O O
O Σ22·1

)
,

where

b0 = − (N − n) {n− (p+ 1)(p+ 2)}
n(n− p− 2)

.

The MLE is biased. Tsukada[8] proposes the UBE Σ̃ as follows:

Σ̃11 =
N

N − 1
Σ̂11, Σ̃12 =

N

N − 1
Σ̂12, Σ̃22 =

N

N − 1
Σ̂22 − c0Σ̂22·1, (4)

where

c0 =
(N − n)(p+ 1)(p+ 2)− n(N − n)

(N − 1)(n− p− 2)(n− p− 1)
,

and shows that the risk of the UBE is smaller than the risk of MLE for Stein’s
loss. By expanding the MLE and the UBE, the asymptotic distribution of these
estimators was derived.

LetΛ11 andΛ22 be p×p and q×q positive definite matrices, respectively. Let
Λ21 be a q×p matrix and let ν1 and ν2 be p×1 and q×1 vectors, respectively.
We define

Λ =

(
Λ11 O
O Λ22

)
, C =

(
Ip O
Λ21 Iq

)
, ν =

(
ν1

ν2

)
, (5)

and consider the set of affine transformations of the data in (1) to be of the
form (

X∗
i

Y ∗
i

)
= ΛC

(
Xi

Y i

)
+ ν, i = 1, . . . , n,

X∗
j = Λ11Xj + ν1, j = n+ 1, . . . , N.

(6)

Romer and Richards[7] also considered the transformation in (6), and noted that
as Λ11, Λ21, Λ22, and ν vary over their respective parameter spaces. The set of
all transformations in (6) forms a group; in particular, each such transformation
is invertible.

We consider a class of estimators, which is of the form

{
Σ̈ ≡ d1Σ̂+ d2

(
O O

O Σ̂22·1

)∣∣∣∣ d1, d2 ∈ R

}
. (7)
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This class is invariant for the transformation in (6), and includes the MLE and
UBE. We derive the estimator, which minimizes the risk for Stein’s loss function

L(A,Σ) = tr
(
Σ−1A

)
− log

|A|
|Σ|

− (p+ q), (8)

where A is an estimator of Σ. We calculate the risk of this class of estimators
as follows:

R
(
Σ̈,Σ

)
= R

(
d1Σ̂+ d2

(
O O

O Σ̂22·1

)
,Σ

)

= d1E
[
trΣ−1Σ̂

]
+ d2E

[
trΣ−1

(
O O

O Σ̂22·1

)]

−E

[
log

∣∣∣∣
Σ̈11 Σ̈12

Σ̈21 Σ̈22

∣∣∣∣− log |Σ|
]
− (p+ q). (9)

Since

E
[
trΣ−1Σ̂

]
=

N − 1

N
(p+ q) +

b0
N

q,

E

[
trΣ−1

(
O O

O Σ̂22·1

)]
=

n− p− 1

n
q,

E

[
log

∣∣∣∣
Σ̈11 Σ̈12

Σ̈21 Σ̈22

∣∣∣∣− log |Σ|
]
= E


log

∣∣∣Σ̈11

∣∣∣
|Σ11|

+ log

∣∣∣Σ̈22·1

∣∣∣
|Σ22·1|




= p log |d1|+M11 + q log |d1 + d2|+M22·1,

where

M11 = E


log

∣∣∣Σ̂11

∣∣∣
|Σ11|


 = −p log

(
N

2

)
+

p∑

i=1

Γ′ [(N − i)/2]

Γ [(N − i)/2]
,

M22·1 = E


log

∣∣∣Σ̂22·1

∣∣∣
|Σ22·1|


 = −q log

(n
2

)
+

q∑

i=1

Γ′ [(n− p− i)/2]

Γ [(n− p− i)/2]
,

the risk is

R(Σ̈,Σ) = d1

{
N − 1

N
(p+ q) +

b0
N

q

}
+ d2 ·

n− p− 1

n
q

−p log |d1| −M11 − q log |d1 + d2| −M22·1 − (p+ q). (10)

By differentiating the risk and assuming zero, we consider d1 and d2 in order to

4
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minimize the risk as follows:

d1 =
N(n− p− 2)

N(n− p+ q − 2)− n− (p+ 2)(q − 1)

=
(1− τ)N2 −N(p+ 2)

(1− τ)N2 −N(p− q + 3− τ)− (p+ 2)(q − 1)
, (11)

d2 =
N {(p+ 1)(p+ 2)− n(p+ q + 1)}+ n(p+ 2)(q − 1) + n2

N(n− p− 1)(n− p+ q − 2)− (n− p− 1) {n+ (p+ 2)(q − 1)}

=
N2(1− τ)(p+ q + τ)−N(p+ 2)(p+ q + τ − τq)

F (N)
, (12)

where

F (N) = N3(1− τ)2 +N2(2p− q + 4− τ)

+N
{
p2 + p(5− 2q + τq − 2τ)− 3q + 2τq − 3τ + 5

}

+(p+ 1)(p+ 2)(q − 1).

Therefore, we obtain the following theorem.

Theorem 2.1. We again denote the estimator as Σ̈ and call the minimum risk
estimator by this estimator, when d1 is (11) and d2 is (12). Since the minimum
of the risk is

R(Σ̈,Σ) = −p log

∣∣∣∣
N(n− p− 2)

N(n− p+ q − 2)− n− (p+ 2)(q − 1)

∣∣∣∣

−q log

∣∣∣∣
n

n− p− 1

∣∣∣∣−M11 −M22·1,

the difference between the risk of the MLE and that of the minimum risk esti-
mator is

R(Σ̂,Σ)−R(Σ̈,Σ)

= −p+ q

N
+

b0
N

q

+p log

∣∣∣∣
N(n− p− 2)

N(n− p+ q − 2)− n− (p+ 2)(q − 1)

∣∣∣∣+ q log

∣∣∣∣
n

n− p− 1

∣∣∣∣ .

Proof. Because the risk of the MLE is

R
(
Σ̂,Σ

)
= −p+ q

N
+

b0
N

q −M11 −M22·1, (13)

from Tsukada[8], the difference between the risk of the MLE and that of the
minimum risk estimator is obtained.

Also, the expectation of this estimator is as follows:
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Theorem 2.2. The expectation of the risk minimum estimator is

E
[
Σ̈
]
= a1Σ+ a2

(
O O
O Σ22·1

)
, (14)

where

a1 =
(N − 1)(n− p− 2)

N(n− p+ q − 2)− n− (p+ 2)(q − 1)
,

a2 =
n2 − nN(p+ q + 1) +N(p+ 1)(p+ 2) + n(p+ 2)(q − 1)

n2(N − 1)−N(p− q + 2)− n(p+ 2)(q − 1)
.

Proof. We can obtain this result using the following expectations:

E
[
Σ̂
]
=

N − 1

N
Σ+

b0
N

(
O O
O Σ22·1

)
,

E
[
Σ̂22·1

]
=

{
N − 1

N
− p

N
· N − p− 2

n− p− 2
− B0

N(n− p− 2)

}
Σ22

+

{
b0
N

+
B0

N(n− p− 2)

}
Σ22·1,

where
B0 = n2 + n(N − n− 2p− 3)− (p+ 1)(2N − 2n− p− 2).

The asymptotic distribution of this estimator is derived in a manner that is
similar to the case of the MLE and the UBE.

Theorem 2.3. The estimator
√
N

(
vec

(
Σ̈11 −Σ11

)
, vec

(
Σ̈12 −Σ12

)
, vec

(
Σ̈22 −Σ22

))′

is asymptotically distributed as a normal distribution with mean vector 0 and a
covariance matrix

Θ =




Θ11 Θ12 Θ13

Θ′
12 Θ22 Θ23

Θ′
13 Θ′

23 Θ33


 , (15)

where Kij is a commutation matrix and

Θ11 = (Ip2 +Kpp) (Σ11 ⊗Σ11) , Θ12 = (Ip2 +Kpp) (Σ12 ⊗Σ11) ,

Θ13 = (Ip2 +Kpp) (Σ12 ⊗Σ12) ,

Θ22 =
1

1− τ
(Σ22 ⊗Σ11)−

τ

1− τ

(
Σ21Σ

−1
11 Σ12 ⊗Σ11

)
+Kqp (Σ12 ⊗Σ21) ,

Θ23 =
1

1− τ
(Σ22 ⊗Σ12) (Iq2 +Kqq)

− τ

1− τ

(
Σ21Σ

−1
11 Σ12 ⊗Σ12

)
(Iq2 +Kqq),

Θ33 =
1

1− τ
(Iq2 +Kqq) (Σ22 ⊗Σ22)

− τ

1− τ
(Iq2 +Kqq)

(
Σ21Σ

−1
11 Σ12 ⊗Σ21Σ

−1
11 Σ12

)
.
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Proof. When the sample size N increases, the coefficient d1 and d2 including
Σ̈ converge to 1 and 0, respectively. Furthermore, according to Tsukada[8], the
asymptotic distribution of the estimator Σ̈ is the same as that of the MLE.

The differences between the risks in Theorem 2.1, the expectation, and the
convergence to the asymptotic distribution are evaluated in the next Section.

3 Numerical simulation

We perform numerical simulations to verify the expectation of the minimum risk
estimator and the convergence to the asymptotic distribution of the estimator
obtained in Section 2. Also, the risks were evaluated by numerical calculations.

3.1 Asymptotic distribution

We define the population distribution as follows. Write by

P =




1 ρ ρ2 ρ3 ρ4 ρ5 ρ6

ρ 1 ρ ρ2 ρ3 ρ4 ρ5

ρ2 ρ 1 ρ ρ2 ρ3 ρ4

ρ3 ρ2 ρ 1 ρ ρ2 ρ3

ρ4 ρ3 ρ2 ρ 1 ρ ρ2

ρ5 ρ4 ρ3 ρ2 ρ 1 ρ
ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1




and Λ = diag(σ6, σ5, . . . , σ2, σ, 1).

We assume that the population distribution is the 7-variate normal distribution
with mean vector 0 and the covariance matrix Σ = ΛPΛ. Let p = 4 and q = 3.
We set ρ = 0.15 and σ =

√
2. The total sample sizes N are 500 and 1000. The

missing rates τ are 0.2, 0.4, 0.6, and 0.8. The number of simulations performed
was ten thousand.

Let

v =
√
N

(
vec

(
Σ̈11 −Σ11

)
, vec

(
Σ̈12 −Σ12

)
, vec

(
Σ̈22 −Σ22

))′
.

To investigate the convergence to the asymptotic distribution, we simulated the
lower probability of v′Θ−1v for the percentile of the chi-squared distribution
with (p+ q)(p+ q+1)/2 = 28 degrees of freedom. Table 1 denotes the result in
the case of N = 500, and Table 2 denotes the result in the case of N = 1000.

The convergence in the case of N = 1000 is better than that in the case of
N = 500. As the missing rate τ increases, the convergence to the asymptotic
distribution worsens, but we find that the distribution of the estimator almost
converged to the asymptotic distribution for a range of more than 90%. Because
most of the lower probability for N = 500 and N = 1000 converge when τ =
20%, it is believed that we can use the asymptotic distribution in the case of
τ ≤ 20% and N ≥ 500.
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Table 1: The lower probability for N = 500.

τ 1% 5% 10% 50% 90% 95% 99%

20% .0095 .0483 .0976 .5076 .9066 .9541 .9912
40% .0089 .0458 .0950 .5029 .9076 .9548 .9913
60% .0079 .0422 .0887 .4980 .9067 .9553 .9916
80% .0048 .0291 .0666 .4560 .8979 .9505 .9903

Table 2: The lower probability for N = 1000.

τ 1% 5% 10% 50% 90% 95% 99%

20% .0094 .0484 .0984 .5053 .9045 .9530 .9905
40% .0095 .0482 .0978 .5027 .9041 .9520 .9904
60% .0090 .0461 .0941 .4941 .9019 .9516 .9905
80% .0068 .0387 .0827 .4767 .8996 .9505 .9899

3.2 Expectation of the minimum risk estimator

We assume that the population distribution is the same as mentioned in the
above subsection and the number of simulations is ten thousand, and we inves-
tigated the expectation of the minimum risk estimator. The symbol S denotes
the expectation of the minimum risk estimator obtained by simulation. To in-
vestigate the accuracy of equation (14), we simulated as follows. We estimate
the expectation as

S = (sij) =
1

Ns

Ns∑

k=1

Σ̈k,

where Ns is the number of simulations and Σ̈k is the minimum risk estimator
in each simulation, and we calculate the error

E =

p+q∑

i=1

p+q∑

j=i

(sij − E[σ̈ij ])
2

=

p∑

i=1

p∑

j=i

(sij − E[σ̈ij ])
2 +

p∑

i=1

p+q∑

j=p+1

(sij − E[σ̈ij ])
2 +

p+q∑

i=p+1

p+q∑

j=i

(sij − E[σ̈ij ])
2

≡ E11 + E12 + E22.

In each Table, the notation xy indicates the value x× 10y.
Because each error is almost the same when N = 200 and N = 500, and the

total error is considered to be a range of simulation errors: thus, the expectation
(14) appears to be correct.
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Table 3: Error between the expectation obtained by the simulation and expec-
tation in (14)

N = 200 N = 500
τ E11 E12 E22 E E11 E12 E22 E

20% 7.342−4 9.571−5 8.516−5 9.150−4 1.618−4 1.973−5 9.370−6 1.909−4

40% 1.598−4 2.810−5 3.463−4 5.342−4 2.787−4 2.761−5 5.856−5 3.649−4

60% 6.616−4 5.607−5 1.541−3 2.259−3 2.094−4 3.500−5 2.378−4 4.821−4

80% 4.047−4 4.105−5 7.917−3 8.363−3 1.198−4 6.271−5 1.221−3 1.403−3

In the given scenario, we calculated the coefficients for Σ and Σ22·1 in the
case of N = 200 (Figure 1). The thin dashed line denotes the coefficient of the
MLE and the dashed line denotes that of the minimum risk estimator. Similarly,
the thin line denotes the coefficient for Σ22·1 of the MLE and the line does that
of the minimum risk estimator. One sees that the coefficient for Σ converges
to 1 and the coefficient for Σ22·1 converges to 0 as the missing rate τ decreases.
By considering the speed of convergence of each coefficient, we have that the
MLE is better than the minimum risk estimator from a biased perspective.

50 100 150 200

-0.5

0.0

0.5

1.0

Figure 1: Coefficients in the case of N = 200

9



−40−

Shin-ichi  TSUKADA

0.1 0.2 0.3 0.4
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0.0015

0.0020

0.0025
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0.0035

0.5 0.6 0.7 0.8

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Figure 2: Difference in Risk for N = 200

3.3 Risk of estimators

We investigated the difference in the risk of the MLE and the UBE, and the
difference in the risk of the MLE and that of the minimum risk estimator.
Because the differences in the risks depend on the sample sizes N and n, and
the dimensions p and q, we adopted the above setting as these parameters. In
each figure, the dashed line denotes the difference in the risk of the MLE, and
the thin line denotes the difference in the risk of the MLE and that of the
minimum risk estimator.

The risks decrease when the sample size N increases. However, there are
similar tendencies in both cases (N = 200 and N = 500). As the missing rate
τ increases, the risks also increase. We have that the risk of the minimum risk
estimator was the smallest, and the risk of the unbiased estimator was smaller
than the risk of the MLE.

0.1 0.2 0.3 0.4

0.0001

0.0002

0.0003

0.0004

0.0005

0.5 0.6 0.7 0.8

0.001

0.002

0.003

0.004

0.005

Figure 3: Difference in Risk for N = 500
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4 Conclusions

We derived an estimator, which has the minimum risk for Stein’s loss on a class
of estimators, and investigated their properties. We obtained that its asymptotic
distribution is the same as that of the MLE, but the estimator is biased. We
are preparing to submit the result for the quadratic loss, and in future, we hope
to study cases for other loss functions.
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