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Unbiased estimators for the covariance matrix
under a monotone incomplete sample

TSUKADA Shin-ichi

Abstract

In this article, we consider an inference for a covariance matrix under monotone incom-
plete sample. The maximum likelihood estimator for a mean vector is unbiased but that
of the covariance matrix is not unbiased. We derive an unbiased estimator for the covari-
ance matrix using some fundamental properties of Wishart matrix. The accuracy of the
estimators is investigated by numerical simulation.

1 Introduction

There are situations where some variates are missing in multivariate statistical analysis, for
example, some of the variables to be measured are too expensive. The problem of missing data is
an important applied problem. For analyzing these data, various statistical methods have been
developed by Anderson [1], Anderson and Olkin [2], Dempster, Laird and Rubin [5], Srivastava
[13] and Little and Rubin [9].

In this paper, we consider a k-step monotone incomplete sample. Let x be distributed as
Np(p,X), and @ the vector of the first ¢; elements of =, where p = 1 > g2 > --- > g, > 0.
We partition x as

/ 7y .
T = (T, X)), Tiipi X1,

and p; + -+ p; = qr—iy1 for i =1,..., k. Then

2 = (@),...,x}), x® = ()., x, )., x® =,

Suppose that we have N; observations on :1:(1), N> observations on w(z), and so on. Let :cg»i)
be the j-th observation on x(¥). Here it is assumed that the marginal density function of the
observed data set {m(ll), .. .,m%l), . .,mgk), .. '7‘”5\2’} is
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1111 f(w?)lum, E 1)Ly )s 1)
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where f(my) \l"[i]» 2(1,...,i)1,...,7)) is the density function of Ny, _, <y,[i], 2(17,_",')(17,_,,2‘)) and
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where p; is a p;-dimensional vector and Xj; is a (py, pi) matrix.

Anderson and Olkin [2] consider the 2-step monotone sample and derive the maximum like-
lihood estimator(MLE) i and ¥ for the mean vector g and the covariance matrix 3 based on
the density function (1). Fujisawa [6] has obtained the estimators by the conditional approach.
Kanda and Fujikoshi [8] investigate some fundamental properties of the MLE, and indicate that
the MLE @ for the mean vector is unbiased but the MLE 3 for the covariance matrix is not
unbiased. In general, it becomes difficult to derive the exact properties of these estimators ex-
cept for some special cases. They study the asymptotic properties. Chang and Richards [3], [4]
derive a stochastic representation for the exact distribution of the MLE f& and 3 under the 2-step
monotone sample. They obtain ellipsoidal confidence region for p and deal with the hypothesis
testing for the covariance matrix. Provost [11] considers the mutual independence of covariance
matrix under the 2-step monotone incomplete sample and derives the likelihood ratio criterion.
Hao and Krishnamoorthy [7] deal with the hypothesis testing that the covariance matrix is equal
to a specified matrix and that the mean vector and the covariance matrix equal to a given vec-
tor and matrix under the k-step monotone incomplete sample. They derive the likelihood ratio
criteria and asymptotic null distribution.

For k = 2 or k = 3, we derive an unbiased estimator for the covariance matrix using some
fundamental properties by Kanda and Fujikoshi [8]. We deal with the 2-step and the 3-step
monotone incomplete sample in Section 2 and 3, respectively. In Section 4, the accuracy of the

unbiased estimators is investigated by numerical simulation.

2 2-step monotone incomplete data

Let the p-dimensional variate & be decomposed as (z}, x}), where x; and x5 are p; and po-
dimensional vectors, respectively. Suppose that we have N7 observations on the full set of vari-
ables, i.e., &, and N> observations on x, and these observations are independently distributed.

That is, we have the following observations:

11 12 1N, TIN;+1 L1N;+No
, Lo , ,eee .
T21 T22 TaN, * *

Let 1) denote the sample mean of  based on the N; observations, and 1) = (:‘vgl)’, :Egl)')’,
:il(l): p; x 1. Let &2 denote the sample mean of the p;-dimensional elements of @; based on
the Ny observations. Throughout this article, we use the letter o only as running suffix for
sample observations. Then the sample covariance matrix based on the N; and N, observations

are expressed as

N1 N»
1 1
50— LS00 g0y g0y s@ = LN G0 z@y50 gy,
2l aa - at) 2 aa? e

respectively, where n; = N; — 1, i = 1,2. Let the partitions of g, ¥ and S corresponding to

the ones of x be
1 1
= ™ o Y T2 g — Sty S§2) .
g o1 Yo s sty
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2.1 Maximum likelihood estimator

Let the maximum likelihood estimator of g and 3 denote by fx and 3, respectively, which are

partitioned in the same way as p and ¥. We can represent fr and 3 as follows:

A _ o el (o )
My = N (legl) + NZw(2)> B Ho = -’Egl) - 2212111 (%gl) - ll41> )
. 1 . . -1 . 1 I
Sn= (Wl(}) + W<2)> . S =3 (Wﬁ)) WD, 5y, = FW2<21?1 + 55 S, ()
1
where N = Ny + Na,

N1 N ’
W(l) = nls(l), W(Q) = n25(2) + % (iﬁgl) - i(2)> (igl) — £(2)> y
(1) (1) _
W, W. 1 1 1 IS s
W - ( M ) oWl =w - wl (W),
Kanda and Fujikoshi [8] prove the following lemma which is useful in deriving the expectation

and variance of fi and X.

Lemma 2.1. Suppose that A is distributed as a Wishart distribution Wy(X,n) and n > p, where
A is partitioned as in the partition of 3, and let Asa.q = Agg — AglAﬁlAlz. Then we have

(i) Agaqx ~ Wp,(322.1,m — p1), and Agg.q is independent of Ayq and A,

(i) The conditional distribution of vec(A1a) given Ajq is distributed as normal distribution
with the mean vector vec(AllEﬁlElz) and the covariance matriz Yos.q @ A11. In particular
E[AT} A1) = 57812, where vec(C) denotes the column vector formed by stacking the

columns of C under each other,
(’LZZ) A11 ~ Wpl (211,71),

1

— -  y»1
n—p—1

(v) ifn—p—1>0, then E[A7] =
(v) if n —p—1>0, then E[Ay Aj{ CA{ A1a] = E[trA'C]E00.1 + 01217 E[C]87] S1a,
where C is a random matriz depending on Aj;.

Proof. The results from (i) to (iv) are well known. For a proof, see Muirhead[10] and Siotani,
Hayakawa and Fujikoshi[12]. The result (v) follows from (ii) and (iv). O

Using the above lemma, the expectation and variance of i and the expectation of 3 are

obtained as follows:

Theorem 2.1 (Kanda and Fujikoshi [8]). Suppose that Ny > p. Then the mean and the covari-

ance matriz of f1 and the mean ofﬁl are given by

(i) Elp] = p,
y . 1 [ Xn Y12
1) Var[ft] = — ., (Ny >p1 +2),
(it) [i1] N < Sor  NVar|is,] ) (N1 >m )
where ) N N
N 2 - 2P1
Var[”ﬂ = Fl <Z22 - W2212111212> + szz-l»
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o N-1 1 (0] 0]
i) B[] = ——% + — :
(i) B[S = =X+ < 0 b0222.1>

where N {N; = (pr+ 1)(p1 + 2)}'

N1(N1 —P1— 2)

bo =

Proof. The results for the mean vector are derived by using 2 ~ N(u,N7'%), 232 ~
N(py, Ny '%11) and Lemma 2.1. The result for the covariance matrix is derived by using
WO ~ W,(S,N; — 1), W ~ W, (211, V2), and Lemma 2.1 and that W™ and W are
independently distributed. O

We may see that f is unbiased and 3 is biased. Kanda and Fujikoshi [8] recommend a usual
correction N

Y=—3 3

N1 3)

for an estimator of . In the next subsection, we will obtain the unbiased estimator of X.

2.2 Unbiased estimator of covariance matrix

From Theorem 2.1, the MLE 3 of the covariance matrix is biased. In this section, we obtain

the unbiased estimator for X as follows.

§_ Y i A
\ Sa i22 7 @
Ng(p1 + 1)(p1 + 2) — N1 Ny

(N=1)(Ny—p1 —2)(Ny —p1 — 1)

Theorem 2.2. Let

where

Yoo = Yo — X221, Co=

Suppose that N1 > max(p,p1 + 2). Then we have

E[E} =)

Proof. Since it is trivial that F [211] =X, F [ilg] =Y and F [221] = Yo7, We prove that
E {igg] = Y9s. It follows from Theorem2.1 (iii) that

- b b -
E[Sn] = <1+ Nﬂl) S T e IDITR N (5)

Using the equation (2), the estimator $o1 2;11212 is written as follows:
so5-15 0 = L@ (Y o 4 Lo (O @ (o) o
12y 212 = War 11 12+ N2 11 11 12

Since i
E {Wz(%) (W1(11)> szl)} =p182 + (N1 — p1 — )22, 577 81,

1 n) ! n) ! 1 Napy No(Ny —2p; — 2) -
E [W2<1> (W1(1)) w® <W1<1)> WQ} = mzm + N1——p1—22212111212
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from Lemma2.1, one sees that

e pr N —p1 — 2 B
E[Ezlzulzlz] = & 21 Yoo + 0

— DN I 6
NNy —p1—2 N(Ny —p; —2) 2=t (©)

where
By = N12 + N1(N2 —2p; — 3) — (p1 + 1)(2N2 — p1 — 2).

From Theorem2.1 (iii), (5) and (6), we obtain that

FE [222] =F [222} - CoE [222} + CoE [2212;11212] = 222‘
The effect of the unbiasedness is investigated by the numerical simulation in Section 4.

3 3-step monotone incomplete data

As in Section 2, we consider the case of the 3-step monotone incomplete sample. Let the
p-dimensional variate & be decomposed as (), x4, ), where &1, 2 and x3 are py, p2 and ps3-
dimensional vectors, respectively. Suppose that we have N; observations on &, Ny observations on
(z},x5)’, and N3 observations on 1, and that these observations are independently distributed.

That is, we have the following observations:

11 T1N,; TIN;+1 T1N;+No
T2 [ T2N, ) T2N;+1 y T T2N;+ Ny )
31 I3N, * *
LIN1+N2+1 L1N;+N2+Ns
* o, *
* *

Let 20 = (:f:gl)’, :i'él)’, :Egl)’)’ denote the sample mean of & based on the N; observations, and
z? = (a’s?)’,:i:f)/)’ denote the sample mean for the first (p; + p2)-dimensional elements of @
based on the N, observations, respectively, and Z®) denote the sample mean for p;-dimensional
elements of x; based on the N3 observations. The corresponding sample covariance matrices are
denoted by S@ (i = 1,2,3) as follows:

Ny
g 1 3 (@) — aM)(2) - 2y,
m a=1
N 2 _(2 2 _(2 !
g Lol el ) (ot
ny =\ 2~z o2 — 2P )
N3
g® - L 3 (@ - 29)(2® — 20,
"3 a=1

where n; = N; — 1, (i =1,2,3) and N = N; + N + Ns.
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Let the partitions of g and ¥ corresponding to the ones of  be

y Y11 X2 Eis > »
12)(12 2)3
p=1 py |, =] Xz Xp X3 = (1202 (2 :
23(12) Y33
M3 Y31 X3z Xs

Similar partitions and notations are used for S and for other matrices.

3.1 Maximum likelihood estimator

We can represent 1 and 3 as follows:

1
o= 5 (Nliz(ll) + N2 4 N3:7;(3>> ,
(1) ~(2)
- 1 (1) ~(2) o Ny + Noy™
= — (N N, ) Y e WALl WA
Hz N1+N2< 1y Ny N1+ N H
. 1) 2" — iy
by = x3 -G o )
) o
. 1 . .
Yu = (Wl(ll) +W® 4 W(3)) , Y12 =311 F,
& 1 6] @) '
Yoz = Ni+ N, (W(12)(12) ad )22-1 R
. . . 1 .
a2z = Xa2a2G, Y33 = N é;?m + G'Y(12)12)Gs
where
_ (1) @\ (o ) _ (w® R TTe))
F o= (Wn + Wiy ) (le + Wi ) ) G= (W(12)(12)> Wiia)s:
wh = p 50,
(1 _(2 _(1 _(2 !
W@ — 9@ 4 N1Ns mg ) - mg ) c'7(1 ) 935 )
- _(1 _(2 _(1 _(2 ’
Ni+ N\ zlt) -z zs) — 2
N- N3)N:- 1
W@ = n,8® 4 % {@(3) e (i + Nﬂg?))}
1 2
1 !
{0 - g (il + sl |

The natural parameters in the conditional approach are defined by

m Ann A Agg
n=1 my |, A= Ay Ay Ay |,
UE! Az1 Az Asgs

which are one to one correspondence to (i, X), where
A =%1, A=A =%0'Sn, A=Y =23»- 35S0,
Az = Aly) = Z(ih 12 S02)3s
Agz = Y3312 = X33 — E3(12)2(7112)(12)2(12)3-
The MLE (7, A) of (n,A) are expressed as follows:
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~(1)
R N . _ L . N N T
M =Hy,, MN2= wgl) - Azﬂgl)a N3 = wgl) = Aszq2) ;-cgl) ) ’
2
R . R R -1
Ay =%, Ap=A) = (Wl(ll) + Wf?) (Wl(;) + Wf?) ,
A1 ) @)
Agy = N T N, (W(12)(12) + W )
Ao — (WD Y o A= Lo
(12)3 = < (12)(12)) (12)3° 33 — E 33.12°

The following lemma is published in Kanda and Fujikoshi [8] to calculate the expectation and

)
22-1

variance of 1 and 3.

Lemma 3.1. Suppose that A, B and C is independently distributed as a Wishart distribution
Wp(E,n1), Wp(E,n2) and Wy(E,ns), respectively. Let n =mny +ng+ng and let A, B, C and ¥
be partitioned as in Lemma 2.1. Further, let L = (A1 + 311)71 (A12 + Bia), and let

D D
D= 11 12 )
Dy1 Do
where D11 = A11 + B11 + C11, D12 = Dy = D11L, Do = yAso.q + L' D11 L and v is a constant.
Then we have
(7,) E [Dll] = nEu,
(’LZ) E [D12] = 71,212,
(iit) if ny +na —p1 — 1> 0, then

_ ns
E[Dss] = — p1) a9 SIEDIAD)N 1+ —————— 3 3.
[Das] = y(n — p1)az1 + n¥o1 Xy 12+p1{ +n1+n27p171} 22.1,

(i) ifny —p—1>0, then
E[trA™'D] = p1 + yp2 +

(n2 + n3)p1 P1P2 ( ng + n3 ns )
+ —
ni—p1—1 ni—p1—1\m—-p1—1 ni+ne—p—1

(v) ifny —p—1>0, then

I, P1
trA=1 Pryn, L) =—F"——
" < r ) 1 (I, )} np—pr—1

P1p2 1 _ 1
n—p—1\ni—p1—1 ny+ng—p—1)
Proof. The results (i), (ii) and (iii) are easily obtained from Lemma 2.1. For (iv) and (v), we
evaluate the expectation by three steps; (1) Aaz.1, (2) A1z, Bi2, (3) A11, Bii, C11 using the

inverse matrix of the partition matrix. See Kanda and Fujikoshi [8] for details. O

E

The expectation of ¥ is obtained as follows:

Theorem 3.1 (Kanda and Fujikoshi [8]). Suppose that N1 > p and Ny > p1 + pa + 2. Then

N—1 . 0O O O
E [z] =—S+5| O Bz By | (7)
O Bs; Bss
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where Bag = b1X92.1, Baz = Bjy = b1X32.1A93, Bss = b1Asp¥ag.1 A3 + ba333.12,

N3 {N1 4+ No — (p1 + 1)(p2 +2)}

b )
! N(Ny + Na)(Ny+ Ny — p1 — 2)
by = 1 (N2 + N3){N1 — (p1 + 1)(p1 +p2+2)} P2NN,
N Ni(N1 —p1 —p2 —2) Ni(N1+ N2)
p1p2N3
+ .
(N1 —p1—p2—2)(N1 + Na —p1 — 2)

Proof. To proof this theorem, it is used that W, W2 and W® are independently distributed
as Wp(%, N1 —1), Wy, 1p,(E12)(12), N2) and Wy, (X11, N3), respectively. Lemma 2.1 and Lemma
3.1 are applied to evaluate the expectation. See Kanda and Fujikoshi [8] for details. O

3.2 Unbiased estimator of covariance matrix

From Theorem 3.1, the MLE ¥ of the covariance matrix is biased as well as the 2-step monotone
incomplete sample. In this section, we obtain the unbiased estimator for ¥ in the 3-step monotone

incomplete sample.

Theorem 3.2. Let

S = Smcofmn Suman = [ 0 I0
22 = Yoz — codzaa, 22 =| « ¢z ;
(12)(12) S1 Do
= = -1 = ~ ~ ~ ~ ~
Yagz = a2 (W(<11§)(12)> W((112))37 Y33 = 1333 + c2A32X20.1M03 + 323312,
where
Nby
Co = AT AN g
(N = 1)(b1 + do)
N N2d, (N, — 2)
c1T =

N—1 (N—1)(dy—daN —2d;N + d;NNy)’
bl(dl + dg)(Nl + NQ)

2T TN+ Ny —p1 - D{da(N —1) — Ny (N, — 2)}
- N
@ T 4y —dyN —2d;N + d; NN,
N1+N2—2p1—2p2—2
d = (NM+N2—1-p1)+Ns Nt Ne—pr—pa—2
4 = bo(Ni+No—p1 —1)  bipa(N1+ No—p1 —p2 — 2)
N(N1+ Ns) N(N1+ No)(N1 —p1 —p2 —2)’
dy = bipa(N1 + Na —p1 —p2 — 2)

N(Ni+ No)(Ny —p1 —p2 —2)°

Suppose that Ny > p, No+ 1> p1 +pa, N3+1>p3 and Ny —p; —pa —2 > 0. Then we have
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Proof. Here, some typical expectations needed to evaluate the expectation of unbiased estimator

are shown, and details are omitted. Applying Lemma 2.1, we get
E [22121_11212] =
{N —1 1

— — — < (IV; Ny —1— -
N N{( 1+ N2 p1) + N3

N1+N2*2P1*2P2*2H S
N1+ Na—p1 —p2—2

Ny + Ny —2p; —2py — 2
N1+ Ny —p1 —p2—2

1 _
+N {(Nl +N2*1*P1)+N3 }2212111212.

We can evaluate the expectation of 3oy using the above equation and Theorem 3.1.

The expectation of $a5 could be proved by a similar calculation for 2(12)3 in Theorem 3.1.

z 1) o)
E {202)(12) (W(12)(12)> W(12)3]
= -1
= E [2(12)02)] Y 12)12) 2(12)3

—1
= a2 X(12)(12)212)3 = X(12)3:

E {2::(12)3]

Using Lemma 2.1 and Lemma 3.1, we get

& b
E [233-12] = (Nl - 2)233 - NIA3222241A23
1
+ {F(Aﬁ —p1—pa—1)—(Ny — 2)} ¥i33.12,
1

oA s (N1 + Ny —p1 —p2—2)ps N+ N1
E[A Sop1las| = B VI A
322422.1 23} N+ VM) (N —p1—p2—2) 33.12 1 N+ N,

—p
L Az2¥a2.1A03.

The expectation of Y33 can be evaluated by the expectation of 233 in Theorem 3.1 and the

above equations.

We see that the estimator

i _ ( i£12)(12) i£12)3 )
Y3(12) Y33

O

is unbiased. As well as the 2-step incomplete sample, the effect of the unbiasedness is investigated

by the numerical simulation in Section 4.

4 Numerical simulation

In this section, we evaluate the expectation of estimators by numerical simulation. Let T" =

(tij) be the estimator of covariance matrix, i.e., 2, Y and . The expectation of the estimator

T is evaluated by
o ] &
T=(ty)=—> T
s i1
where ng is a number of simulation and 7; is the estimator in each simulation. We adopt
- 2
E=" (fj—0y)

4,j=1
1<j
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as the difference between T' and ¥ = (0;;). The number of simulation is a hundred thousand.
Let

1 P p? ceo ppT3 ppm2 0 pp-l
p 1 p . pp,4 ppr ppr
P p 1 pr=s prt ppm3
P, = . .
pP=3  ppmt ppmd 1 p P
pr=2 pp3 ppd P 1 P
pr=t prm2 pp3 ) 1
As the population covariance matrix, we adopt the following matrices
21 = AlpPpAlpy (Case 1)
22 = AQPPPAQP, (Case 2)
where Ay, = diag(c?~1,0P72,...,02,0,1) and Ag, = o1, and assume that the population mean

vector is 0.

4.1 2-step monotone incomplete sample

We assume that the population distribution is the 7-variate normal distribution. Let p; = 4
and po = 3. We set p = 0.15 and 0 = v/2 in Case 1, p = 0.5 and ¢ = 2 in Case 2. The total
sample size are 50, 100, 200, 500 and 1000. The missing rate 7(= N3/N) are 0.2, 0.4, 0.6, 0.8.
Table 1 represents the coefficient ¢y of the unbiased estimator. Table 2 - Table 6 represent the
results in Case 1, and the results in Case 2 are represented in Table 7 - Table 11. In Table, E;,

FE> and F3 denote a partial error as follows:

P1 pP1 P p
E = Y (fg—oy)+) > (l—o0y)'+ D (ty—o0y) =E+E;+FE;s,
i,j=1 =1 j=p1 4,j=p1+1
i<i i<

which are the error for ¥17, 312 and Yoo, respectively, and the notation x¥ denotes the value
r x 10Y.

As a matter of course, errors are small when the total sample size N is large. The error of by
and the unbiased estimator is smaller than that of the maximum likelihood estimator as a whole.
The error of ¥ is close to that of the unbiased estimator in the case of 7 = 0.2, but the error of
the unbiased estimator is smaller than that of 3 in 7 = 0.8. There is a similar tendency in each
Table, and the difference of errors is about one digit when N = 1000.

From these results, it is obvious that the unbiased estimator is more accurate. We recommend

this estimator under the 2-step incomplete sample.

4.2 3-step monotone incomplete sample

We set the parameters of the population distribution as well as under the 2-step monotone
incomplete sample. It assumes that the population distribution is the 9-variate normal distribu-
tion and p; = py = p3 = 3. We set p=0.15 and ¢ = v/2 in Case 1, p = 0.5 and ¢ = 2 in Case 2

as the 2-step monotone incomplete sample.
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The missing rates (11,72, 73) are (0.77, 0.15, 0.08), (0.62, 0.25, 0.13), (0.52, 0.32, 0.16) and
(0.46, 0.36, 0.18). The coeflicients concerning the unbiased estimator is represented in Table 12.
Table 13 - Table 15 represent the result in Case 1, and the results in Case 2 are represented in
Table 16 - Table 18. In Table, from E; to Fg denote a partial error as follows:

p1 p1 pi1tp2 p1 P
T 2 T 2 T 2
E = Y (—oy)+Y, > (E—oy)+y, Y  (l—oy)
4,j=1 i=1j=p1+1 i=1 j=p1+p2+1
i<j
pP1+p2 pP1+p2 P D
T 2 T 2 T 2
+ E (tij —0ij)” + E E (tij —0i)” + E (tij — 03;)
6,j=p1+1 i=p1+1j=p1+p2+1 i,j=p1+p2+1
i<j i<j

Ey+ Ey+ E3 + Ey + Es + Fe.

In this case, Fy, E5 and Fg, which are the error for 3os, o3 and Y33, respectively, are expected
to be improved by the correction. When N = 100 and 73 = 0.18, Ejg is not improved and the
total error E of the unbiased estimator is also not improved compared to the error of . However,
E4, E5 and Eg are improved as the total sample size is large. Since the order of the coefficients
by is O(N 1) and that of by is O(N~2) from Theorem 3.1, the improvement is small compared
with the 2-step monotone incomplete sample. Even if coefficients ¢5 and c3 are looked, these are
gotten. Coefficients co and c3 are small, and the improvement is also small.

Since the order of the coefficients cg, c1, co and c3 are O(N~2), O(1), O(N~3) and O(N~1),

the unbiased estimator has asymptotically similar properties with the MLE.

5 Conclusion

We constitute the unbiased estimator for the covariance matrix ¥ under the 2-step and the
3-step monotone incomplete sample. Numerical simulation show that the unbiased estimator
improves the bias. The order of the bias under the 3-step monotone incomplete sample is O(N~2)
and that under the 2-step monotone incomplete sample is O(N~1). Since the bias under the
3-step monotone incomplete sample is smaller than that under the 2-step monotone incomplete
sample, the effect of a bias correction under the 3-step monotone incomplete sample is small.

Kanda and Fujikoshi [8] describe the unbiased estimator for A under the k-step monotone
incomplete sample, but it seems that it may be difficult to constitute the unbiased estimator
for 3 under the k-step monotone incomplete sample which will be a problem for the future.
The order of the bias may be O(N'~*) under the k-step monotone incomplete sample and the

correction may not influence so much for the k(> 4)-step monotone incomplete sample.
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Table 1: The coefficient ¢y concering the unbiase estimator

7=02

T=04

7=0.6

7=0.8

N = 1000

—1.6660~3
—1.795773
—1.087673
—4.7523~4
—2.4391~4

0.0000
—4.007073
—2.7358 73
—1.243573
—6.4467—4

2.721172
—4.947473
—5.360173
—2.687873
—1.424373

6.5306~1

3.591572
—6.563473
—6.217473
—3.580273

Table 2: The case of ¥ =

¥1 and N =50

7=02
N; =40,N; =10

T=04
N; = 30,Nz =20

pX b 5

pX bX 5

E,
Es
Es

6.753873
4.57697°
5.41787°

6.753873
4.57697°
1.65677*

2.3552
4.48617*
1.07822

5.051673
2.645574
4.4607°6

5.051673
2.6455~4
4.4607°6

2.3993
6.49014
8.697273

2.3665 6.96527% 6.853773

2.4087 5.32067% 5.3206°

7=0.6
Ny = 20, Ny = 30

7=0.8
Ny =10, Ny = 40

by by )y

by by by

E
Ey

[y

5.390873
7.019474
1.18847%

5.3908 3
7.0194~4
1.063172

2.0713
1.561273
8.7614°°

6.746173
775474
1.293071

6.746173
7754774
3.3726

2.3876
1.029173
2.9159

2.0730 1.672372 6.211673

5.3045 3.3801 1.368271

Table 3: The case of ¥ = ¥; and N = 100

T=02
N; = 80,N; =20

T=04
N; =60, Ny =40

b ) b

5 5 5

E
E;3

6.80987% 6.8098*
4.857875 4.85787°
4.87587° 2.5336°°

5.658071
1.5406—4
2.7944-3

6.8554 4
2.9986~4
9.4919-6

6.85547*
2.9986*
3.20067*

5.4891°1
4.02537%
4.082373

5.6875"1 7.78327% 7.32107*

5.534071 1.314573 9.9488*

7 =0.6
N; =40, Ny = 60

7=0.8
N; =20,N; =80

Ey

Es

1.0290~3
9.80787°
9.8867°6

1.0290~3
9.80787°
4767374

5.4923~1
1.8299—4
4.571973

3.091373
3.83594
1.7465~4

3.091373
3.835974
1.819472

5.9817-1
4.829274
7.651773

5.5399"1 1.603873 1.136973

6.063071 2.166972 3.649573
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Table 4: The case of ¥ = ¥; and N = 200

T7=02 T=04
Ni = 160, Ny = 40 N; =120, N, = 80
Eyp [ 1.209771 1.55027%  1.550273 | 1.2247-1 1.450173 1.4501°3
E, | 5.545875 5.34487° 5.344875 | 7.77937° 3.46007° 3.46007°
E3 | 7917874 2.8016~° 2215176 1.193573 1.3518~* 2.0943°6
E | 1.218271 1.6316™% 1.605873 | 1.2374~1 1.619973 1.486873
7=0.6 7=0.8
Ny = 80, Ny = 120 Ni = 40, Ny = 160
E; | 1465871 5.01907* 5.01907% | 1.34627! 2.3597~*% 2.3597*
Fy | 1.27217% 1.1830~* 1.18307% | 4.1906™* 4.2582% 4.25827%
FEs [ 2118573 5.3706=* 7.070976 | 2.6179=% 8.0144=* 1.0151°°
E | 1.488371 1.15737% 6.27267* | 1.3766™1 1.46327% 6.719474
Table 5: The case of ¥ = ¥; and N = 500
T7=02 T=04
N; = 400, N, = 100 N; = 300, Ny = 200
Ep [ 1904472 2.7188~% 2.71887% | 2.343372 1.4041~* 1.4041~*
B | 1.64107° 1.222275 1.222275 | 3.1681~° 2.9937° 2.99377°
E3 | 1.27247% 4409476 1.504377 | 2.2540~* 3.40367° 5.31367"
E | 1.918872 2.88527% 2.8426~* | 2.3690~2 2.0438* 1.7088~*
7=0.6 7=0.8
N; = 200, Ny = 300 N; = 100, Ny = 400
Ey [ 2.735972 4.36717* 4.3671~* | 1.37042 1.247273 1.247273
Ey | 7.327475 6.50467° 6.50467° | 5.4416™° 5.10577° 5.10577°
FEs [ 5.15297* 1.83317% 4.679676 | 1.19037% 6.4227~* 3.14896
E | 2794772 6.8506™*% 5.06437* | 1.494972 1.94057% 1.301473
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Table 6: The case of X =

¥, and N = 1000

T=02
N = 800, No = 200

T=04
N1 = 600, Ny = 400

5 5 5

by by by

E,
E3

4.65463 5.51557% 5.51557°
1.24657% 1.11657° 1.11657°
2.13837° 8.673277 2.22567

1.6598 %
1.747975
9.82817

1.6598 4
1.747975
1.05927°

4.65993
1658375
6.03485

4.688473 6.71887° 6.85467°

4.736873  1.94057* 1.8444~4

7=0.6
Ny =400, N2 = 600

7=0.8
Ny = 200, N2 = 800

pY X 5

by by by

Ey
Ey
E3

2.33057°
1.68937°
1.815477

2.33057°
1.68937°
3.98797°

5.158073
1.66327°
1.1902-4

5.43337°
1.111473

5.43337°
1.111473
2.408774

5.6903 73
8.8377°6

4.041974 1.251376

5293672 8.007775 4.03797°

6.103373  3.06327* 6.66987°

Table 7: The case of ¥ = X5 and N = 50

7=02
N7 =40,N2 =10

T=04
N7 =30,N2 =20

by by )

E,
Es

4.2654°
2.68927°
2.77597°

4.2654°
2.68927°
8.4499-°

3.093272
2431173
2.504972

4.60637°
3.11547°
6.4427°6

4.6063~°
3.11547°
6.442776

3.271572
2.878473
2.328972

5.841372  1.5405* 9.73057°

5.888272 8.3660° 8.3660°°

7=0.6
N; =20,N; =30

7=0.8

Ny = 10, Ny = 40

Ey

E;

7.03767% 7.037675
2.70027% 2.70027°
2.065572 1.633174

3.059072
2582073
2.9558 74

5.62197°
2.6164~4
3.095471

5.62197°
2.6164~4
7.5186

3.049572
1.947373
6.4372

3.346872 2.075372 2.6069~*

6.4697 7.5190 3.0986 1




Unbiased estimators for the covariance matrix under a monotone incomplete sample

Table 8: The case of ¥ = ¥y and N = 100

7=02 T=04
N; =80, N> =20 Ny =60, Ny =40
Ey | 8729373 4.40597° 4.40597° | 8.94647% 6.72987° 6.72987°
Ey | 9.30797% 4.23267° 4.23267° | 9.5537"% 3.74807° 3.74807°
E3 | 7811873 1.7269=* 5.597276 | 1.0635"2 7.8428* 3.5411°°

E | 1.747272  2.5907"* 9.19827° | 2.0537"2 8.8906"* 1.40197%

7=0.6 7=0.38
N; =40, Ny = 60 Ny = 20, Ny = 80
E; | 8134473 3.09647° 3.09647° | 7.774573 5.1610~¢ 5.161076
Ey | 6.4986™% 2.45547° 2455475 | 5.81537% 2.2257~% 2.225774
E3|1.122872 9.49527% 1.17787° | 1.5197"2 3.99722 3.7677~*
E | 2.001272 1.005073 6.72977° | 2.3553"2 4.0200~2 6.0451~*

Table 9: The case of ¥ = ¥y and N = 200

7=0.2 7T=04
Ny =160, Ny = 40 N; =120, Ny = 80

5 b b b3 5 b3

By | 1.945573 1.993875 1.993875 | 1.9231~3 9.4143~¢ 9.4143~6
E, | 2.4286~* 1.0058~° 1.0058~° | 1.5562~* 1.0896° 1.0896~°
Es | 2.166273 7.975875 6.534176 | 2.5480~3 1.8338~% 3.5459~°
E | 435453 1.0975% 3.653075 | 4.6267°3 2.0369~% 5.57695

7=0.6 7=0.8
N; =80, Ny = 120 Ni =40, Ny = 160
E;|1.923873 6.398976 6.39897° | 1.944473 9.1507"¢ 9.1507°6
E, | 3.59787% 5.37327° 5.373275 | 1.48617* 4.87467° 4.87467°
E3 | 5.459373 1.322573 1.38927° | 6.9245~% 2.123873 1.07387*
E | 7742973 1.38267% 7.40237° | 9.017573 2.1817°% 1.65287%
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Table 10: The case of ¥ = Y5 and N = 500

T=02 T=04
Ny =400, N» = 100 Ny = 300, No = 200

by by by by by by

3.27837% 3.75207¢ 3.752076 | 2.6190™* 5.42776 5.4277°6
2.21727% 4.45827% 4.458276 | 4.40747% 5.882476 5.882476
3.0515"* 6.50177% 1.180376 | 5.9870~* 8.881575 2.67707¢

6.5515"* 1.471275 9.390576 | 9.0467-* 1.0013"% 1.3987°

7=0.6 7=0.8
Ny =200, N» = 300 Ny =100, N = 400

3.01237% 2434976 2.434976 | 3.51127* 3.006575 3.0065°6
3.84937° 8.84107% 8.841076 | 4.0609°° 2.189775 2.1897°
9.50827% 2.52107* 4.400476 | 3.29327% 1.805173 3.3478°

1.290573  2.63387* 1.56767° | 3.684973 1.8300~% 5.8381°°

Table 11: The case of ¥ = Y5 and N = 1000

=02 T=04
Ny = 800, No = 200 Ny = 600, Ny = 400

by by by by by by

7.51137%  7.735577 7.735577 | 1.0676"* 4.04467° 4.0446°°
9.01407¢ 2.394476 2394476 | 5472876 2.35107% 2.3510°
7.848375 2.841576 1.18967C | 1.7051"% 3.07817° 2.0496~¢

1.6261~% 6.0094-6 4.357576 | 2.8275"* 3.71767° 8.445276

7=0.6 7=0.8
Ny = 400, No = 600 Ny =200, Ny = 800

X X X pX pX X

8.46697° 7.0901~7 7.0901°7 | 9.2591°% 1.6870~% 1.68706
5.03907¢ 4.122876 4.122876| 7.224876 1.43017° 1.43017°
3.03697% 9.92797° 9.5260~7 | 1.0045~% 5.86187* 7.0857°6

3.93407% 1.04117% 5.784476 | 1.104373 6.0217"* 2.30737°




Unbiased estimators for the covariance matrix under a monotone incomplete sample

Table 12: The coefficients concering the unbiase estimator

N =100

=077 | 71=062 | =052 | 7 =046

by | —=7.19647% | —1.220973 | —1.543173 | —1.767573
by | —8.420373 | —1.757472 | —2.658872 | —3.3510~2
co | =7.617476 | —1.29807° | —1.64537% | —1.88857°
c1 | 1.0102 1.0103 1.0104 1.0105

co | 7.60027¢ | 1.292975 | 1.63717° | 1.87767°

c3 | —1.144076 | —2.9924-6 | —5.446976 | —7.8158~6

N =200
=077 | 71 =062 | =052 | 7 =046
by | —3.71627% | —6.51267% | —8.6474~% | —9.9402~*
by | —4.538073 | —9.298373 | —1.421072 | —1.90542
co | —1.910576 | —3.354876 | —4.461476 | —5.1333~6
c1 | 1.0051 1.0051 1.0051 1.0051

cy | 1.908876 | 3.349476 | 4.4517°6 | 5.1204°6
c3 | —1.507377 | —3.8216~7 | —6.9837"7 | —1.0852~6

N =500
=077 | 1=062 | 1 =052 | 7 =046
by | —1.59107% | —2.78327% | —3.6176™* | —4.2847*
by | —1.862073 | —3.869073 | —5.927073 | —8.041173
co | —3.217477 | =5.6325~7 | —7.325277 | —8.6796~7
c1 | 1.0020 1.0020 1.0020 1.0020

co | 3.216377 | 5.629177 | 7.319477 | 8.671477
c3 | —9.761479 | —2.507378 | —4.564778 | —7.1879~8
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Table 13: The case of ¥ = ¥; and N = 100

71 = 0.77, 75 = 0.15, 75 = 0.08
Ny =77,Ny=15 N3 =&

1 =0.62,7 = 025,75 = 0.13
Ny =62, Np = 25, N3 = 13

by

b

by

by

b

b

Ey
Es
Ey
Es
Es

8.5713

6.626073
2.486274
1.518371
1.4538~4
2.437473

1.279572
9.81007*
2.53994
6.1057*
8.00907°
1.23457°

1.279572
9.8100~*
2.5399~4
5.9953 4
8.0099°3
9.8969~6

8.5902

7.486373
4.600474
1.526371
1.811374
3.144073

8.504073
3.419973
4.6981~4
8.1201*
9.5427°°8
1.0959~4

8.504073
3.419973
4.6981~4
7925374
9.54157°
9.388375

8.7326

1.473372

1.471972

8.7541

1.341172

1.337672

1 =0.52,7 = 0.32, 75 = 0.16

71 = 0.46, 7> = 0.36, 73 = 0.18

Ny =52, N, = 32, N3 = 16

5

b

b

Ny = 46, Ny = 36, N3 = 18

by

b

b

Ey
E3
Ey
Es
Es

9.1108

7.467973
7.27577*
1.710771
1.6897~4
2431473

1.077972
2.288073
7.42644
2173573
5.3658°
1.3698~°

1.077972
2.288073
7.42644
2.122473
5.35977°
7.213276

8.4984

5.123373
1.3592~4
1.879371
1.1186~4
1.497073

9.408873
1.983773
1.3868 %
4791773
8.28507°
6.69537°

9.408873
1.983773
1.3868 4
4.707673
8.29367°
9.312375

9.2926

1.6050~2

1.599372

8.6932

1.647372

1.641572

Table 14: The case of ¥ = ¥; and N = 200

1 =0.77, 72 = 0.15, 73 = 0.08

1 =0.62,75 = 0.25, 75 = 0.13

Ny = 154, Ny = 31, N3 = 15

by

b

b

Ny = 125, N = 50, N3 = 25

3

b

b

1.9102

2.610273
1.0484*
4.110472
5.87397°
7773374

1.02432
7.439574
1.0596 4
3.7483 74
2.5246°
2.62067°

1.02432
7.439574
1.0596 4
3.72344
2.52407°
2.52057°

1.9483

4.692773
3.321374
4.393072
3.87367°
9.7011~4

1.77282
2165173
3.3545~4
6.9346~4
2933375
6.903575

1.77282
2.165173
3.3545~4
6.8747°4
2.9339°%
6.55975

1.9548

1.151972

1.151572

1.9983

2.102172

2.101172

1 =0.52,7 = 0.32, 75 = 0.16
Ny = 105, Ny = 63, N3 = 32

1 = 0.46,75 = 0.36, 75 = 0.18
Ny =91, Ny = 73, N3 = 36

3

b

s

by

b

b

Ey
E,
E;
Ey

Es

2.3489

3.986273
5.036774
4.187672
2.88887°
1.13493

6.572073
2.828473
5.086774
5.78844
1.7089~°
1.163574

6.572073
2.8284°3
5.08674
5.725574
1.709575
1.0944~4

1.7915

2.077773
3.233274
5.19962
4.83527°
1.151273

2.29562
4.758274
3.26197*
2117673
3.26167°
1.2114~4

2.29562
4.758274
3.26197
2.10203
3.26207°
1117274

2.3965

1.0621~2

1.0608~2

1.8471

2.602972

2.600472
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Table 15: The case of ¥ =

¥1 and N = 500

1 =0.77,72 = 0.15, 75 = 0.08
N, = 385, Ny = 77, N3 = 38

1 =0.62,7 = 0.25, 75 = 0.13
Ny = 312, N, = 125, N3 = 63

by by by

by by )

3.668271 1.30647% 1.306473
7.20867* 2.75557* 2.755574
3.62767° 3.63837° 3.63837°
8.593673 3.71897% 3.71457%
1.4824=% 1.16707° 1.16707°
1.45427% 8.3444~6 8.2470°6

6.44243
1.0984—3
2.138575
8.56887°
1.82787°
179945

6.442473
1.0984—3
2.138575
8.6028°
1.82787°
1.82957°

4.204871
1.634873
2.13937°
6.758573
2.14337°
1.8086~%

3.763371  2.01027% 2.009773

4291071 7.684873 7.684273

1 =0.52,7 = 0.32, 73 = 0.16
Ny = 263, Np = 158, N3 = 79

71 = 0.46, 7> = 0.36, 73 = 0.18
Ny = 227, Ny = 182, N3 = 91

by by by

by by by

3.415971 2.075473 2.075473
5.7654=%  4.22817% 4.2281*
6.63117° 6.680875 6.68087°
8.49857% 3.6298* 3.6201°*
2.53587° 1.924375 1.92427°
2.30437* 3.65307° 3.58847°

1.69043
4599674
1.722274
1.83437%
3.57837°
9.5750~°

1.6904-3
4.5996~4
1.722274
1.842374
3.577875
9.718275

3.1321°1
7.333874
1.7167*
7.516673
2.74177°
3.600474

3.509871 2.983773 2.9821°3

3.220271 2.63987% 2.637573

Table 16: The case of ¥ =

3o and N = 100

71 =0.77,72 = 0.15, 75 = 0.08
Ny =T77,Ny=15,N3 = 8

1 =0.62,72 = 0.25, 75 = 0.13
Ny = 62, Ny = 25, N3 = 13

by by by

by by by

5.699273 4.346876 4.34686
8.0570~% 8.0390~% 8.03906
2.00567° 3.304276 3.3042°6
6.76077% 5.95167° 5.8891°°
7.16227%  4.07007% 4.05606
6.997873  7.247275 6.22637°

2.551576
6.9750~°
1.50227°
1.427674
7.39187°
1.43587*

2.551576
6.975076
1.5022°
1.44717%
7.43777°
1.7704~4

5549873
7.53717%
3.80787°
7.6276~3
1.148873
7.823873

2.100072 1.5175~* 1.4090~*

2204272 4.2067* 3.84807*

1 =0.52,75 = 0.32, 75 = 0.16
Ny =52, Ny = 32, N3 = 16

1 = 0.46,75 = 0.36, 75 = 0.18
Ny = 46, Ny = 36, N3 = 18

by by by

by by by

5.758776
7.188876
4.587476
1.15574
1.04247°
2.4847-6

5.530073 5758776
6.5024~4 7.1888°¢
2.5360~° 4.5874-6
7.384673 1.13377%
7.875674 1.0286°
5.774773 4679376

1.941578
7207475
3.7721°5
2.754675
2.557075
1.329574

1.94157°
7207475
3.77217°
2.87037°
2.58157°
9.0484-°

6.270573
9.19327%
6.97347°
6.452673
8.51174
4.745773

2.015372 1.4601~* 1.45877%

1.930972 2.74217% 3.15277*
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Table 17: The case of ¥ = Y5 and N = 200

7 = 0.77, 75 = 0.15, 75 = 0.08
N; =154, N, =31,N3 =15

7 =0.62,7 = 0.25,75 = 0.13
Ny =125, Np = 50, N3 = 25

by by by

by by by

Ey
E;
Ey
Es
Es

3.0482°¢
9.654376
5.7283°6
1.589475
7.8424°6
3.59427°

3.048276
9.654376
5.7283°6
1.59695
7.856576
3.77147°

1.317273
1132774
1.0501~°
1.646773
2.1861~%
1.850373

3.9085°¢ 3.9085°6
4.8057°6  4.8057°¢
4.087376  4.0873°6
8.80327¢ 8.7637°6
1.119875 1.12227°
1.5669 4

1.528673
1.513974
1.2202°5
1.5014~3
1.4576~4

2.497773 1.481574

5.1566~3 7.9970~% 7.8110~°

5.837173 1.8950~% 1.8094~*

7 = 052,75 = 0.32,75 = 0.16

71 = 0.46, 7 = 0.36, 75 = 0.18

Nl = 105,N2 = 63,N3 = 32

by by by

Ny =91,Ny =73, N3 = 36

by by by

Es
Es
Ey
E5
Eg

5.1892°6
3.8904°6
1.378275
3.1901°°
1.776575
1.8008 %

5.189276
3.890476
1.37827°
3.22157°
1.77547°
1.9450~4

1.319973
2.03707*
1.6309~°
1.853173
1.7451~%
2637373

1.054675  1.054672
1.596575  1.59657°
1.839275  1.83927°
7.42527°% 7.37177°
2.37347° 2.36527°
3.80917* 3.537574

1.238273
1.0131%
1.355275
2.0717-3
2.7890~4
3.234173

6.204873 2.67337% 2.5261°%

6.937873 5.2380"* 4.9603~*

Table 18: The case of ¥ = Y5 and N = 500

7 = 0.77, 72 = 0.15, 75 = 0.08
Ny = 385, Ny = 77, N3 = 38

7 =0.62,7 = 0.25,75 = 0.13
Ny = 312, Ny = 125, N3 = 63

pX X X

5.3491°6
4.49006
1.315776
3274176
2.1748°6
9.2111°6

5.3491°6
4.49006
1.3157°6
3.273376
2.1733°6
9.363076

2.526374
4.500375
1.7122-6
2.3169~4
1.9808~°
3.1839~4

1.4414-6
2.356176
1.38957°
1.0143°°
3.9404-6
4.47457°

1.4414°6
2.3561°¢
1.38957°
1.0166~°
3.9415°¢
4.53987°

2.54474
4.20397°
1.778275
3.32197*
3.56837°
4.417774

8.69257% 2.59647° 2.58157°

1.12397%  7.71977% 7.65207°

71 = 0.52, 72 = 0.32,73 = 0.16
Ny = 263, Ny = 158, N3 =79

71 = 0.46, 7 = 0.36, 75 = 0.18
Ny = 227, N, = 182, N3 = 91

b X X

pX X X

2.05886
7255776
4.874776
9.0267°6
2.536176
799218

2.05886
7255776
4.8747°6
9.051676
2.538276
8.15167°

2.4498*
2.71797°
3.877576
3.14077*
3.62567°
5.77037*

3.464276  3.4642°6
277976 2.7797°6
4.97786 4977876
3.33946 3.3218°6
3.257976  3.2569°6
1.1270~* 1.10197*

2272574
3.54487°
5.3194°6
2.7605"*
3.3265°°
6.525174

1.203473  1.07307* 1.0567*

1.22087% 1.30527% 1.2799~*




Unbiased estimators for the covariance matrix under a monotone incomplete sample
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