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In this paper, the laminar whirling buoyant flow in a rotating vertical pipe with an axial line heat source of constant temperature 

is solved analytically. While there are numerous detailed experimental and numerical investigations of the thermal spiral flows, the 

analytical solution is an approximate model of a laminar fire whirl. In laboratory experiments, the thermal whirling flow is generated 

by a point heat source with a pair of stationary vertical eccentric half pipes; instead, a constant circumferential pipe wall velocity 

is given as one of the boundary conditions in this model. The Boussinesq approximation is applied for the buoyancy. The Navier–

Stokes equations in cylindrical coordinates are simplified by neglecting the inertia terms. The derivatives along the vertical axis 

vanish based on the assumption of fully developed flow. The radial velocity component is also zero owing to the same assumption. 

The quantities along the circumferential direction remain unchanged. The buoyancy velocity distribution is similar to that of the 

Hagen–Poiseuille flow with an extra logarithmic term due to the radial temperature distribution. The tangential whirl velocity is 

independently obtained as a potential circulation. The natural convective heat transfer formula is obtained, and the Grashof number 

becomes a linear function of the Reynolds number, where the radius of the line heat source is a parameter.  
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1. Introduction 

The study of fire whirls is important for not only understanding 

the natural phenomena but also preventing such disasters (1)-(7). A 

laboratory-scale fire whirl can be easily created with two 

transparent plastic half pipes which are slightly off-center (i.e. 

eccentric) (8). Alcohol can be used as the fuel at the bottom of the 

vertical half pipes, and the resulting flame to rises because of 

buoyancy. Combustion is very stable without the half pipes. When 

the flame is surrounded by a pair of eccentric vertical half pipes, a 

small fire whirl develops owing to the circulation from the vertical 

slits between the two pipes.  

Another interesting experiment is a smoke whirl with a 

mosquito coil, as shown in Fig. 1(9), (10). At the very beginning, 

smoke rises vertically yet fluctuates. After a while, the smoke 

follows a spiral flow, which is equivalent to the fire whirl. In this 

experiment, the flow can be visualized by a light sheet. A 

horizontal cross section is visualized and the smoke circulation is 

visible; the vertical plane is also visualized.  
In particular, this small laminar smoke whirl from the mosquito 

coil can be modelled mathematically as buoyant pipe flow with a 

line heat source of constant temperature along the vertical axis.  

 

       Side view                      Cross section 

Fig.1 Whirling smoke flow from a mosquito coil  

(transparent half pipe diameter/height/offset:100 mm/500 mm/10 

mm) 

 

Instead of the two side slits in the experiment, a constant 

circumferential wall velocity is used. The Boussinesq 

approximation is applied for the buoyancy. The convective terms 

should be negligible in the spiral smoke flow, so the Navier–Stokes 

equations in the cylindrical coordinate are simplified accordingly. 
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The vertical and the radial derivatives vanish owing to the 

assumption of fully developed flow. The tangential flow 

derivatives also vanish.  

2. Governing Equations and Solutions 

Figure 2 shows the present equivalent flow model for 

approximating the smoke whirl shown in Fig. 1. The circulation 

from the side slits is replaced by the artificial tangential velocity of 

the pipe wall to simplify the flow model. The line heat source at 

constant temperature along the vertical axis models the heated 

smoke, and this isothermal region is assumed to be gaseous. 

The governing equations for an incompressible flow in 

cylindrical coordinates of Fig. 2 are given as follows: 
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where r  is the radial coordinate,   is the circumferential 

coordinate, z is the vertical coordinate, v is the radial velocity,   

u is the circumferential velocity, w is the vertical velocity, t is 

time, p is pressure,  is the density of air,  is the kinematic 

viscosity,   is the dynamic viscosity, g  is gravitational 

acceleration, T is temperature,  is the thermal diffusivity, hT

is the heat source temperature, wT is the wall temperature,  is 

the line heat source radius and  
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The following approximations are applied: 

 

0v  , 0
t





, 0







, 0, const
p

z z

 
 

 
. 

The governing equations without the convective terms become 
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Fig.2 Spiral flow in cylindrical coordinates  , ,r z        
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Combining Eqs. (8) and (11), the tangential velocity is found to be 

inversely proportional to the radial coordinate: 
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From Eq. (7), we obtain 
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where refp is the reference pressure. The pressure coefficient is 

defined as 
2

ref ref
p

2

ref

1 1
1

2

p p r
C

ru

       
 

.  (14) 

The energy equation, i.e. the radial heat conduction equation, 

becomes 
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with boundary conditions 

 hT T  at  0r r    , (16) 

wT T at  r a r a .     (17) 

From Eqs. (15)–(17), the temperature is given by 
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The Boussinesq approximation is given by 

 0 0

0

1 1 T
   


 
     

 
, (19) 

where  is the thermal expansion coefficient and 0 denotes the 

ambient density. From Eq. (19), Eq. (9) becomes an ordinary 

differential equation: 
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where 0  and the excess pressure P is defined as 

P p gz  .   (21) 

The boundary conditions for Eq. (20) are 

 0
dw

dr
  at 0r  ,      (22) 

0w   at r a .      (23) 

Equation (20) can be solved analytically with the temperature 

distribution of Eq. (18) as follows: 
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The first term in the right hand side of Eq. (24) corresponds to the 

Hagen–Poiseuille flow; the second term, whose derivation 

implicitly assumes a  , represents the thermally driven flow. 

In this simplified mathematical model, the radial velocity 

component is zero, and the tangential velocity is independently 

given by Eq. (12). 

The average velocity avew is derived from the volume flow rate 

Q as follows: 
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where  2d a  is the diameter. The dimensionless form of Eq. 

(25) is 
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where the Grashof and the Reynolds numbers are defined together 

with the normalized pressure and coordinate as follows: 
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The first term in the right-hand side of Eq. (26) corresponds to the 

different form of the pipe friction coefficient 64 / Re  owing 

to the different reference velocity.  

From Eqs. (25) and (26), the flow condition  ave0 0Q w 
is given by 
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At the critical condition ave 0Q w  , we obtain 
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The velocity distribution at critical/dP dz becomes 
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Equation (33) represents an updraft in the core with descending 

airflow in the outer region. If the adverse pressure gradient is 

greater than critical/dP dz  , the flow rate Q  is negative and the 

buoyancy effect is hampered by the pressure, although this 

situation is rather mathematical. 

In the smoke whirl experiment shown in Fig. 1, effectively no 

external pressure gradient exists: / 0dP dz  .  

For a purely thermally driven flow with / 0dP dz    in 

Eq.(24), we obtain 
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where maxw  is the maximum velocity along the vertical axis 

/ 0r a  . Equation (37) is derived from Eq. (34), and it indicates 

that the thermally induced flow is proportional to both the 

temperature difference and the size of the heated core. 

 

3. Computational Results 

Figure 3 shows the thermally driven buoyant flow, Eq. (36), 

together with the Hagen–Poiseuille flow. Figure 4 shows the 

temperature distribution, Eq. (18). The temperature is assumed to 

be constant as wT T  for 0 r   . The constant temperature 

core is assumed to be fluidic. Equation (37) is shown in Fig. 5 with 

the heated core ratio / a  as a parameter. Figures 6 shows the 

spiral path lines for / 0.2,0.5r a    and1 , and the same vortex 

stream surface is shown in Fig.7, where 
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and 0v  . The pitch of the spiral is given by 
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In Fig.6, two non-dimensional values, i.e. circulation A and time
t , are defined as follows: 
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From Eq. (40), the pitch of the spiral takes the maximum value at  

0.492
r

a
 . 

 

Fig. 3 Buoyant and Hagen–Poiseuille flows  
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 Fig. 4 Temperature distribution  

 

 

Fig. 5 Buoyant flow with a line heat source size / a  

 

   Fig. 6 Spiral path line  

( / 0.2,0.5,1.0, 1, 0 2r a A t    ) (11) 

 
Fig. 7 Spiral stream surface 

( / 0.2,0.5,1.0, 1, 0 2r a A t    ) (11) 

 

4. Concluding Remarks 

A fire whirl can be generated in the lab by surrounding a flame 

with a pair of eccentric half pipes. An alcohol lamp or a mosquito 

coil is placed in the bottom of the pipe in the experiment. From the 

experimental flow visualization, a simple mathematical model for 

the laminar spiral buoyant flow was proposed. The model assumes 

a fully developed flow with an axial line heat source at constant 

temperature and pipe wall rotation instead of the circulation due to 

the slits of the eccentric half pipes. The radial velocity component 

is zero and the circumferential velocity component has the same 

form as that of a potential-free vortex, i.e. inversely proportional 

to the radial coordinate. The circulation is proportional to the pipe 

rotational speed. The radial temperature is determined from the 

heat conduction equation. The thermally driven vertical flow is 

obtained in a closed analytical form from the temperature solution 

with the Boussinesq approximation. The thermally driven flow has 

a similar velocity distribution to that of the Hagen–Poiseuille flow 

with an extra logarithmic term due to the temperature distribution. 

The analytical solution of the spiral flow was visualized, and the 

pitch of the spiral reaches its maximum near the midpoint between 

the pipe wall and the axis. The radial heat transfer to the pipe wall 

is obtained, and the Grashof number is proportional to the 

Reynolds number. 

 

 

 

0

0.5

1

0 0.5 1

delta/a=0.01

delta/a=0.05

delta/a=0.1

r/a


T/
T

re
f

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000

delta/a=0.1

delta/a=0.05

delta/a=0.01

Gr

R
e

0.5

0.0

0.5

1.0

0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5



6 層流旋回浮力流れの解析モデル 

Acknowledgements 

 

We would like to thank Editage (www.editage.com) for English 

language editing. 

References 

(1) K. Yamashita, “Occurrence of Fire Whirls around Multiple Fires in Cross 

Wind (in Japanese)”, Japanese Journal of Multiphase Flow, Vol. 9, No. 2 pp. 

105–115(1995) 

(2) S. Komurasaki, T. Kawamura, and K. Kuwahara, “Vortex Breakdown in 

Thermal Convection by Rotating High-Temperature Heat Source (in 

Japanese)”, RIMS Kôkyûroku, Mathematical Aspects of Complex Fluids, 

(O. Sano Eds.), Vol. 1081, pp. 180-191(1999) 

(3) K. Satoh and K.T. Yang, “Study of Fire Whirl (in Japanese)”, Nagare, Vol. 

19, No. 2 pp. 81–87(200) 

(4) K. Kuwana, S. Morishita, R. Dobashi and G. Kushida, “Theoretical and 

Numerical Study on Flame Height of Axisymmetric Laboratory-Scale Fire 

Whirls (in Japanese)”, Journal of the Combustion Society of Japan, Vol. 51, 

No. 155 pp. 56–62(2009) 

(5) M. Shinohara and S. Matsushima, “Experimental Study of Generation 

Mechanism of Stationary Fire Whirls Just Downwind of a Flame (in 

Japanese)”, Nagare, Vol. 33, No. 6, pp. 503–507(2014) 

(6) H. Onishi and K. Kuwana, “Flow around a Fire Whirl (in Japanese)”, 

Journal of the Combustion Society of Japan, Vol. 58, No. 185 pp. 167–

171(2016) 

(7) S. Harada, M. Mizuno and G. Kushida, “Effects of Flame Base Condition 

on Fire Whirl (in Japanese)”, Proc. JSME Tokai Branch 65th Conference, 

No.163-1. https://doi.org/10.1299/jsmetokai.2016.65._525-1(2016) 

(8) R. N. Meroney, “Fire Whirls and Building Aerodynamics”, 

www.engr.colostate.edu/~meroney/projects/MERFWB.pdf. 

(9) K. Onodera, “Fire Whirl with Two Half Pipes (in Japanese)”, Graduate 

Thesis, Meisei University, Feb.(2018) 

(10) E. Morishita, I. Kumagai, K. Onodera, R. Kubota, Y. Moriyama and T. 

Yamazaki, “A Mathematical Model for a Laminar Spiral Flow  to 

Approximate Fire Whirl”, O3.40, ECT2018 :The Tenth International 

Conference on Engineering Computational Technology, Sitges, Barcelona, 

4-6 Sept. (2018) 

(11) Wolfram Research, Inc., Mathematica, Ver. 11.3, Champaign, IL (2018) 

 


