田老における超高エネルギー宇宙線の観測 工 観測装置

佐久山博史1) 鈴木昇2) 倉持浩司3) 佐久本功達4) 中野秀典5)

1. はじめに

人類は宇宙の探索と共に、物質の基本構成要素の究明にも力を注いできた。物質を究極 的な最小単位にまで分割するという原始論はギリシャのデモクリトスの時代にまでさかの ぼる。そして今日、アトムの探求は素粒子物理学に受けつがれ、基本粒子の探索、素粒子 基本法則の追求が行われている。これらの研究には巨大粒子加速器や、大型素粒子検出器 が使われている。

宇宙という超マクロの世界と、素粒子という超ミクロの世界は相反する疎遠なものでは なく、実は密接に関わり合いを持っていることが今までの研究から明らかになってきた。 ビッグバンにより宇宙は光のエネルギーで満ちた火の玉状態に始まり、物質の最小単位で ある素粒子(クォーク、ニュートリノ、電子等)が生まれた。そして宇宙膨張によって温 度が下がるにつれて素粒子が結合して、陽子、中性子、原子が順々に作られ、これらを種 にして銀河が形成されたと考えられている。宇宙初期の素粒子が飛び交っている時期に頻 繁に起こった素粒子反応は素粒子基本法則によって特徴づけられ、その後の宇宙形成に重 要な役割を果たしたことが容易に想像される。このように素粒子は宇宙創成及び現在の宇 宙大構造の謎を解く鍵であるといっても過言でない。

宇宙線は宇宙から絶えず地球に降り注ぐ超高速の素粒子または原子核である。その大部 分は陽子(水素の原子核)を始め各種の原子核で、そのほかに、電子、ガンマ線、ニュー トリノなど色々な物がある。これらを一次宇宙線と呼ぶ。星が爆発して生まれる超新星、 そしてその後に残されるパルサーや、周辺のガスを強い重力で吸い込んでいるブラックホー ルなど、激しく活動する天体で生まれたと考えられる非常に高いエネルギーの宇宙線は宇 宙で最もエネルギーの高い天体現象からの情報をもたらすメッセンジャーである。

2. 序論

宇宙線が地球大気に到達すると空気原子核と衝突し、各種の相互作用の結果、原子の電 子をはねとばし、原子核と核反応を起こす。パイ中間子を始め多数の二次粒子ができ、あ る物はさらに空気の原子核と衝突しミューオン、ニュートリノやガンマ線に崩壊する。こ のようにして宇宙線は衝突、発生、崩壊、吸収を繰り返しながら大気中を進む。これらの

4) 情報センター実習指導員

¹⁾ 理工学部物理学科教授 宇宙線物理

²⁾ 理工学部物理学科助手 宇宙線物理

³⁾国際短期大学情報通信科助手

⁵⁾ 日本データコム(株)

宇宙線を二次宇宙線と呼ぶ。二次宇宙線のうち電子、ガンマ線やミューオンは地上広く降 り注ぐ。この現象を空気シャワーと呼ぶ。ミューオンやニュートリノのように貫通力の強 いものは、さらに地下深くまで到達する。

宇宙線の観測は大気の色々な高度から地下深くまで行われている。人工衛星、気球さら に飛行機を使った一次宇宙線の観測、高山、地上そして地下や深海を使った二次宇宙線の 観測が行われている。

宇宙線実験は素粒子或いは原子核実験と同じく高エネルギー実験であり共通するところ が多い。加速器実験において人工的に作られた粒子は広がることなく短時間の間に特定の 反応が行われる。しかし宇宙線実験は宇宙から降ってくる粒子を待ち、降ってくる頻度は エネルギーが10倍になると約100分の1に減ってしまう。このため検出器の面積を大きく することで補い、又現象はエネルギーが非常に高くなると検出される粒子数もそれにつれ 多くなり、小さい空気シャワーでも数千個、大きいものは数億個以上の粒子群になる。こ れらの粒子は空気中で散乱され、横方向に数百メートルの広がりとなる。空気シャワー現 象を観測するには、多数の検出器を広く編み目のように並べ、広がってくる粒子を同時に 検出することである。又研究内容により空気シャワーを各種の装置、方法で観測する。

この観測による基本データとしては

- 1. シャワーの全粒子数 (サイズNe)
- 2. シャワーの中心位置 (X₀、Y₀)
- 3. シャワーの到来方向(天頂角 θ、及び方位角 φ)
- 4. 特定粒子の種類、エネルギー、角運動量等

などである。

3. 観測装置

空気シャワー粒子の総数をはかるには、空気シャワーの全ての粒子が降ってくる領域を

写真1 シンチション検出器群とデータ収集及びコントロール室

覆うだけの検出器を隙間無く敷き詰めることが理想的ではあるが、実際には困難であるため、通常多数の検出器を広い面積に目の粗いざるのように展開し、情報を集め総粒子数を推定する。このとき使われる検出器は荷電粒子が通過することで電気信号を出すシンチレーション検出器、チェレンコフ検出器、比例計数管などがある。

図1 明星大学田老宇宙線空気シャワー観測装置全体図

明星大学田老宇宙線観測所の空気シャワー観測装置を写真1に、配置図を図1に示す。 シャワー粒子の総数を推定するにはプラスチックシンチレーション検出器を使い、シンチ レータの大きさは面積1m×1mと0.5m×0.5mの二種類、それぞれ厚さ5cmの検出器を 22台、空気シャワー中心コア付近の構造を調べる検出器には面積0.5m×0.5m、厚さ2.5cm のものを169台設置している。また空気シャワーの到来方向を調べる角度検出器を4台、 空気シャワー付近の電子成分の時間構造を調べるチェレンコフ検出器3台、それに水槽内 にシャワー粒子数の増減から遷移曲線を調べる比例計数管を半径80m四方に設置している。

全体のシステムは検出器、前置増幅器 (Pre. amp)、主増幅器 (Main. amp)、自動ディ ジタル記録計 (ADR)、ハードディスク (H・D)、フロッピィーディスク (F・D)、コン ピュータにより構成されている。宇宙線が特定の条件を満たしたときにシステム全体を稼 働させるためのトリガーシステムは Discri (discriminator)、Coin (coincidence)、OR、 Veto (anti-coincidence)、E.F. (emitter follower) などから構成されている。このトリ ガー信号によりシンチレーション検出器、角度検出器、コア検出器、比例計数管、そして チェレンコフ検出器などが作動し始める。又これらの装置の各動作が正常であるかをモニ ターし、修理そして調整するために水銀パルサー、光パルサー、オシロスコープ、光電子 増倍管用高電圧電源、NIM/BIN電源、波高分析器が必要不可欠である。

3-1. シンチレーション検出器

シンチレーション検出器(図2)はプラスチックシンチレータと光電子増倍管を組み合わせたもので、検出器に入った電子の粒子数を測定すると共に、時間分解能が非常に良く、 1億分の1秒の精度で時間差を検出できるので、電子の到着時間差からシャワーの到来方 向も測定できる。

電子のような荷電粒子がプラスチックシンチレータを通過すると、シンチレーション光 (減衰時間=3.0~3.2ns)を出す。その光を効率よく光電子増倍管に集光するため内面に 特殊高反射塗料(VHエナメル)を塗布し、集光率を高めた四角錐台形型容器(53cm×53

図2 シンチレーション検出器

cm高さ42cm)を用いている。光電子増倍管は光電面に入った弱い光を電気信号に変え、前 置増幅器でインピーダンス変換と50倍の増幅をする。大きくなった信号は長い高周波同軸 ケーブル(最大120m)を経て、観測室にある主増幅器へと送られさらに50倍増幅される。 宇宙線粒子は1個の時もあれば10⁶個も同時に入ってくる場合もある。このような1~10⁶ の範囲のパルス波高を忠実に、しかも直線的に増幅しなければならない。このために対数 増幅器というものを使用している。

今、図3のようなパルスV₀、時定数 τ 、あるレベルV₁を超す時間幅Tを持った指数関数波形があると次の等式が成り立つ。

図3 対数増幅器によるパルス波高と粒子数の関係

log(V₂/V₁)=(T₂-T₁)/τ
V₂/V₁=N₂/N₁
V₁:粒子数1個(N1)に対するパルス波高値
V₂:粒子数N2個に対するパルス波高値
τ :時定数
T₁、T₂:シュミットレベル(Vth)を切るまでの時間

図4 波高値と時間の関係

 $V_1 = V_0 \cdot \exp(-T \neq \tau)$

図4について考えると

 $\ln (V_2 / V_1) = (T_2 - T_1) / \tau$

検出器に1個の粒子が入った場合のパルス波高値 V_1 とパルス幅 T_1 が予め分かっていれば、同時に多数の粒子が入ってパルスが飽和した場合でも" τ "が変わらなければ T_2 をはかると、入射粒子数の自然対数値が T_2 と T_1 の時間差から求まる。 T_1 、 T_2 は 2 MHzのクロックパルスで数えられ、その数が記録装置に記録される。このことは粒子数が非常に大きくなっても対数的にしか増えていかないために記録系が安価となり処理が簡単になる。

3-2. コア検出器

空気シャワー芯部付近の現象を捕らえようとするとき、中心部では比較的狭い面積のと

13□								
								T1 1 🛛
		C3						
				T4 ⊠	T1 ⊠			
				T3 ⊠	T2 ⊠			
C1 ■ □			C2					
FT3 169 🖸 🖸							3.0	T2 157 m

□:シンチレーション検出器

◎:トリガー検出器

☑:FT1~FT4:角度検出器

■:C1~C3:チェレンコフ検出器

図5 空気シャワー中心部付近の検出器群

ころに非常に多くの粒子が降ってくるため光電子増倍管の飽和や long tail、増幅器の飽 和等検出器の dynamic range の限界が問題になる。そのため芯付近の密度を正確に測定 する解決策として

- 1. 電磁成分の数を測定する場合、厚いシンチレータを使うと異常な粒子数を示すこと があるので薄いシンチレータ(厚さ2.5cm)を用いる。
- 2. 光電子倍増管に印加する高電圧は電流増幅率が直線内で最も低い-420Vから使っている。

このようにして大粒子数も直線的に検出できるようになる。

空気シャワー芯部付近の構造を精密に調べるため、0.25 ㎡シンチレーション検出器を 1.53m間隔で縦横各13台づつ合計169台を格子状に配置した(図5)。総面積は337 ㎡であ る。芯部用シンチレータは面積50cm×50cm、厚さ2.5cmのサイズであり最高波長感度は420 nm、シンチレーション効率は50~60%である。光電子増倍管は浜松ホトニクス製R878型 2 インチヘッドオンタイプ、最高波長感度は420nm、印加電圧は直流電流増幅率の直線内 で決定し-420V以上である。各検出器の調整は波高分析器を使い宇宙線1粒子を主増幅 器のgainで調整する。宇宙線観測システムを図6に示す。

トリガー信号により全検出器が同時に作動し始め、各検出器からのパルス波高値を対数に比例したパルス幅 (時間) へ変換する。そのパルス幅を2MHzのクロックパルスで計数し記録する。

図6 宇宙線空気シャワー観測システム・ブロック・ダイヤグラム

3-3.角度検出器

空気シャワーの到来方向を正確に決めることで、超高エネルギーの粒子がどこで創られ、 地球にやって来るかという宇宙物理の手がかりとなる。又その粒子の核反応を調べる際、 天頂角分けにすることにより、空気シャワーの各段階での発達過程を空気層の厚さの変化 を利用して行うことができる。大角度になるほど空気層は電磁成分の吸収層としての役割 をはたし垂直方向の空気シャワーとは異なった観測が可能になる。このように空気シャワー の到来方向を決定することは、空気シャワー研究に不可欠である。

空気シャワーの角度検出方法はシャワーフロントが平面であることを利用し、3台以上 の検出器をある間隔に置き検出器に粒子が到達する時間差を検出する。2台の検出器に粒 子が入射する場合について考える。時間差測定に伴う各種の誤差は誤差の分布をガウス分 布と仮定し、ゆらぎの幅を標準偏差で表すと、総合的な時間差誤差σ,は

 $\sigma_{1}^{2} = 2 \sigma_{1}^{2} + 2 \sigma_{p}^{2} + 2 \sigma_{r}^{2} + \sigma_{r}^{2}$

 σ_{f} : シャワー面の厚さ

σ_p: 光電子増倍管中での電子の走行時間のゆらぎ

*σ*_u:トリガー回路のゆらぎ

σ_r:記録方式によるゆらぎ

と表される。又、 σ_{f} 、 σ_{p} 、 σ_{u} は2台の検出器にそれぞれ独立に起こる。 σ_{r} により到来 方向の決定精度が決まる。

角度検出器のブロック・ダイヤグラムを図7に示す。角度検出器には応答時間の早い光

最初の信号から50ns内に残りの3台から信号がない場合。150ns後にclear信号を出し、次のトリガー信号を待つ。
 50ns内に残りの3台から信号がある場合。各検出器からの時間差を13bitに変換し、1シャワー当たり100μsで処理が完了する。測定部の精度は0.1ns、時間差変換精度は0.5nsである。データ通信はRS-232C、9600bpsである。
 検出器間の距離10m、天頂角30°で角度精度は1°以内が得られた。

図7 角度検出ブロック・ダイヤグラム

22

電子増倍管(浜松ホトニクス製R1828-01(Tr=1.3ns))を使用している。 システム構成は 標準規格のNIM/CAMAC モジュールを用い、CAMAC バスにパーソナルコンピュータ (PC-9801FA)を接続しデータコントロールをする。角度検出器からの信号はインピーダ ンス変換と増幅された後、デバイダーで二分され discri 及び ADC へそれぞれ送られる。 4 台の検出器のうちどれか1台から信号があったとき、TDC をスタートさせ、ADCのゲー トを開くと同時に Gate & Delay 1もスタートさせる。その後、150ns 以内に残りの3台 から信号が来ないとき、即ち4台の検出器からの信号が coincidence しない場合、delay・ パルスを出し作動中の TDC および ADC を直ちにクリアする。coincidence 信号がきた場 合 discri からカレント・サム出力が、ある一定のレベルを超えたとき出され、もう1台の Gate & Delay 2をスタートさせる。すなわち Gate & Delay 2 は 4 台の検出器からの信 号が coincidence したときのみスタートする。coincidence 信号によりスタートした Gate & Delay 2 は、幅110ns のブランキング・パルスを出し、すでにスタートしている delay ・ パルスをマスクし、TDC 及び ADC のクリア信号を出さないようにする。この間に、TDC の各チャンネルは Delay 回路を通ってきた信号によってストップが掛けられ数値(時間) に変換される。Gate & Delay 2 は TDC と ADC の動作が完了するまで110 µs のブラン キング・パルスを出し続ける。全ての動作が完了すると取り込み用 discri・ゲートを開け 信号入力待ちとなる。

3-4. 比例計数管^{1),2)}

空気シャワーは空気の厚さと共にその粒子数を増やし、最大となりそして減衰していく と考えられる。このように遷移曲線を求めるには色々な高度で粒子数を観測しなければな らない。しかし現実には問題が多く不可能にちかい。そこで空気の代わりに空気とほぼ相 互作用の似た物質として水を使えば遷移曲線がそのまま空気の延長として観測できる^{30,4)}。 例えば水の深さ1mは空気1kmに相当する。

宇宙線の観測はますます大規模化しつつある。これに伴って大面積の検出器の必要性が 増してきた。シンチレーション検出器より安価で大面積化が容易である検出器として、断 面10cm×10cm長さ2mの建材用鉄製角型パイプにPRガス1気圧を封じ込めた比例計数管 を大水槽の水中内深さ2mに設置してある。

3-5. チェレンコフ検出器

最近の速いエレクトロニクス技術を使うことで空気シャワー粒子の十数nsの到着時間分 布の測定ができるようになった。コア付近(r <10m)に着目して、その時間構造を詳し く調べるには、さらに数倍速い検出器や回路系を使うことによりシャワー・フロントの厚 みやその中の粒子数の分布状態を精度よく測定できる。

検出器としては乱反射による光のばらつきを無くすため容器内壁に黒色のラシャ紙にサ ンドペーパをかけ貼っている。UVアクリル板を使ったチェレンコフ検出器と高速タイプ の光電子増倍管(R1828-01、tr=1.3ns)、減衰の少ない高周波同軸ケーブル(10D-SFA) を使用している。そして送られてきた電気信号をそのままの形で記録するスーパーストレー ジ・オシロスコープ(TS-8422、400Mz)を使用して得られたデータはGPIBインターフェー スを介しパソコンに取り込まれる。

トリガー検出器は、チェレンコフ検出器に重ねて乗せ、三角形の形状で一辺が8

m間隔で設置した。各トリガー検出器からの信号は E.F Amp、Discriminator、そして3-Hold Coincidence 回路を通った後トリガー信号となり、TS-8422型オシロコープのトリガー となる。

チェレンコフ検出器光検出システムのブロックダイヤグラムを図8に示す。

光電子増倍管から出ている暗電流パルスを用いたシステムレスポンス時間 Tr=1, 35ns、FWHM=2, 15ns。

4. データのチェック及び換算

空気シャワー観測は長時間にわたって連続的に行われるため、各検出器が安定に作動しているかを調べることはデータの信頼性を保つために重要である。このためシンチレーション検出器の粒子数に対する直線性をきめ細かくチェックしている。観測データはコンピュータのメモリ上に記録され図9の形式で1例1例出力される。

図8 チェレンコフ光検出器ブロック・ダイヤグラム

- 1. 1週間に一度田老観測所から送られてくるデータを使い全検出器の粒子密度スペクトラムから検出器の状態(時定数、シングルピーク、増幅率、ノイズ等の変動)をチェックしている。
- 2. 1ヶ月に一度シングルピーク以上のカウント数をスケーラでカウントし調整する。
- 3. 2ヶ月に一度オシロスコープによる時定数、波形の形、ノイズレベル等のチェック をする。
- 1年に一度主増幅器のリニアリティー・チェック、波高分析によるシングルピーク・ チェック、光パルサーによるリニアリティー・チェック等を行っている。

空気シャワー観測に用いられる増幅器は、その dynamic range を大きく(1~10⁶)取 る必要があるため、対数特性を持った増幅器が主として用いられる。この場合、その対数 特性がどの程度の精度で求まっているか常時監視しなければならないが簡単ではない。一 つの方法は各検出器の粒子密度スペクトラム(図10)を調べることにより、その直線性を チェックする方法がある。これは宇宙線が等方的に一定の頻度で降ってくることを利用し た方法であるが、大きい粒子密度までこの方法でチェックすることは頻度が少ないため期 待できない。対数特性を持った増幅器(Log Amp)のリニアリティー・チェックは光パ ルサーを使い1~10⁶の範囲まで測定する。

4-1. 粒子数換算の方法

リニアリティー特性の測定

発光ダイオードの光源を用いて、ニュートラルデンシティー・フィルタ (ND-filter) によりワイドレンジの光量に対する光電子増倍管の出力を測定している。減光比32 (Log = 0.5)、10 (Log = 1.0) の ND-filter を使い、ダイナミックレンジ6桁の光量に対する出力 (Log out)を調べる。図11にその例を示す。この直線の傾きをτとする。

プラスチック・シンチレータの代わりに発光ダイオードを使った疑似光 (tr=3ns、パルス幅10ns) によるチェック。
図11 ライトパルサーによるリニアリティ・チェック

1粒子の波高値測定

波高分析器(PHA)を用いて、全方向入射粒子による各検出器の波高分布を測定して いる。これは図12に示すようなピークを持つ。1粒子の波高値としてこのピーク電圧値を 用いる。この電圧値に対する Log out はこのピーク電圧付近での Pulse の減衰時定数を 測定し、これとディスクリレベルから算出する。

以上の2つのパラメータを用い、次式を用い ADR 値より粒子数に換算する。

 $D = \exp((ADR-Ts)/2\tau)$ (detector⁻¹)

Ts:1粒子が入射したときの Log out

τ:リニアリティー直線の傾き

4-2. コア位置の決定

169台のシンチレーション検出器上にコアが入った場合。一番粒子数が高く打った検出 器を囲む数台の検出器の重心でもってコア位置を算出する。但し、コア付近の粒子数の fluctuation の影響を避けるために、各検出器の粒子数をその周辺の4台の平均値に置き 換えて計算する。

最大粒子数を打った検出器が169台の外側にあった場合、周辺部に設置してある他の40 台の検出器を使い重心計算によりコア位置を決定する。

4-3.角度の決定

シャワーフロントを平面近似し、最小二乗法を用いて到来方向を決定する。

4-4. サイズ、エイジの決定

コア位置と角度より、そのイベントの横方向分布(ラテラル分布)が描ける。これに NKG 関数を適合する事によりサイズ、エイジを求める。この方法は最小二乗法を用いる。 重みには各検出器に入った粒子数に対するポアッソン誤差と検出器の計測誤差20%を用い ている。

5. 解析方法

観測された EAS から基本量として(1)宇宙線到来方向(天頂角 θ 、方位角 ϕ)、(2) サイズNe、コアの座標(X₀、Y₀)、エイジパラメータS、(3) 横分布 等がある。

解析手法として各種あるが我々が行っている一部を述べると次のようになる。

(1) 宇宙線到来方向(天頂角 *θ*、方位角 *φ*)の決定

到来方向は4台の角度検出器に到達した時間情報(各検出器間の時間差)から検出器間の距離di、時間差をtiとすると

ti=di/c c:光速

で表され、方向余弦を使うと

 $l^2 + m^2 + n^2 = 1$

という条件を持って

 $\Sigma di = (1 \cdot xi + m \cdot yi + n \cdot zi + c \cdot ti)^2$

が最小になるような最小2乗法の計算によって求める。

(2) サイズ Ne、コアの座標(X₀、Y₀)、エイジパラメータSの決定

電子による電磁カスケードシャワーは電子の多重クーロン散乱のために横方向に広がる。 臨界エネルギーの電子が1 radiation length 物質を通過したときの横方向へのずれを表わ す量をモリエールユニット(Rm)と呼ぶ。田老(北緯39度45分、東経141度56分、標高200 m、平均気圧988.25hpa、平均気温15℃)では80.5mである。カスケードシャワー中の電 子の横方向分布は、西村、鎌田により理論化されたN-K 関数を Greisen が使い易い形に したものであり、NKG 関数と呼ばれ一般によく使われる。編み目のように設置された検 出器からのデータと NKG 関数を比較することで総電子成分の数 Ne とシャワー軸の位置 (X₀、Y₀)が決定される。Ne は空気シャワーの大きさを表し EAS サイズと呼ばれる基本 的な量である。

全粒子が Ne であるシャワーの横方向の広がりの分布、即ち軸から距離がRiだけ離れた ところの粒子密度を ρe とすると、NKG 関数⁶ は次のように表せる。

ρe(R)=Ne/Rm²・f (R/Rm)
f(r)=C(s)・r^(s-2.0)・(1+r)^(s-4.5)
C(s) は規格化定数で、
C(s)=0.366・s²(2.07-s)¹²⁵

s はエイジと呼ばれシャワーの発達の度合いを表すパラメータである。s $\sim 3t / (t + 2 t_{max})$ で与えられる。t はカスケードシャワーの出発点からの距離であり、 t_{max} はカスケードシャワーが最も発達する深さである。s <1 、s = 1、s > 1 は、それぞれシャワーの発達段階、最も発達した段階、減衰していく段階を表している。

28

6. 予備実験の結果

観測期間 1996年8月12日~9月7日 25日間 有効観測時間 578 時間 空気シャワー・トリガー・イベェント数 5968例

コア・イベェント数 1156例

シャワー粒子の横分布は空気シャワー現象を特徴付ける基本パラメータであり、その性 質を知る上で非常に重要となる。この実験で得られた空気シャワーの横分布の1例を図13 に示す。図中の●印は各検出器により得られた粒子数密度を示す。又、曲線はこの横分布 を NKG 関数で適合したとき、最も良く適合する NKG 関数を示したものである。

空気シャワー中心コア付近の構造⁶⁰及び時間構造を知る上で粒子数分布と波形情報は重要となる。図14、図15は、コア検出器郡の中に空気シャワーが入った現象の例でありサイズがそれぞれ10⁶代と10⁶代であり、コア構造が良く現れている。また角度検出器より得られたディジタル情報から求めた角度(θ 、 ϕ)とチェレンコフ検出器からの波形時間情報から算出した値が精度良く一致している。このことはシャワーの到来方向決定精度が非常に上がったことを示している。さらにチェレンコフ検出器からのパルス信号はシンチレーション検出器に比べ分解能が数倍良いことが分かった。

Ne=1.85×10⁵

s=0.85 X, Y(5.86, 10.8) AS(θ =31°, ϕ =195°) Cherenkov(θ =31°, ϕ =195°)

	TCD0060, 1	AP	Page 1										
	0050 0031	960831	125505	000 000									
	63.9 +	53.0 +	43.6 +	48. J +	49.5 +	50.2 •	53.1 +	38.2 +	38.9 +	38.7 +	28.7 +	31.6 +	31.0
	105. 1 +	65. 8 †	93.7 +	66.9 +	69.3 +	69. 8 +	77.7 +	43.2	52. 1	39. J	44. 8 +	24. 1 +	27.7
	125.2	109.3 1	66. J	77.7 +	80.2 +	75.3 +	73.6 †	52. 3 +	57.3 +	45.4 +	31.2	40.3 +	26. 0 +
	138. 4	151.6	-110.0	92.6	80. I +	80. 0 †	72.9 †	58.6 +	57.7 †	51.7 +	57.7 +	32. 3 +	23.0
	192.0	125.2	225.0	150,0	105.7	146.6	128.7 +	110. 4 +	-1.0 +	60. 5 +	60, 6 +	40. 9 +	25. J †
	238.0	348.6 +	238. 3 †	170.9	162.0 +	152. 2	95.2	94. 8 +	69.4 •	49.7 +	40.9 +	32. 8 +	44.9 +
	522.8 1 +	017.9	378.0	323. 1	212.6	163.0	9p. 8	83.5 +	65.0 +	61.0 +	55.8 +	46. I +	46. 2 +
•	300.8	760.3	367.1	356.7 +	215.3	17 4 . 8 +	157.'8	111.2	89.2 +	78.3 +	59.6 +	46.7 +	40. 1 +
	668.0 1	134.7	472 7	297.9	206.7	164.9 +	164:5	81.7 +	97.6 *	53.4 +	56.5 . +	53.B †.	31.0 +
	513.6	619.0	5,77.3	340.7 +	218/0	151.6	99. 4	142.5	112.6 +	77.0 +	78.9 +	34.2	46.7 +
Di	209.8	394. 0 +	325.8	381,2 1(2)	249.3 +	168.8	154.7 +	103. 6 •	94.9 +	70.0 +	50.6 +	49.9 +	35.9. †
	171.9	263.2	250.4	-167.7	167.7	225. B	178.0 *	144.8	89.0 +	61, 2 +	81.2 +	44. 4 +	44.0 +
	138.4	130:-5 +	178.0	, <u>1</u> 35-8	159. E	114.9 +	122.2 +	76.7 +	87. 4	72.6 +	47.8 +	32.5 +	44.0
	28												

図15

謝辞

本研究に当たり宇宙線観測所の建設、維持、運転及びデータの郵送などの業務に多大な 協力をしていただいた田老セミナーハウスの管理人である松舘忠一氏、佐々木市武氏に感 謝致します。

明星大学理工学部研究紀要

参考文献

- 1) 佐久山博史: 大面積用検出器: 明星大学研究紀要 No.10, p.33, 1974
- 2) 佐久山博史 他: 大面積用比例計数管の性質: 明星大学研究紀要 No.12, p.23, 1976
- 3) 佐久山博史 他:田老宇宙線観測所における空気シャワー観測:明星大学研究紀要No.24, p.19, 1988
- 4) H.Sakuyama et al., Proc. of the 20th ICRC, Moscow, Vol.9(1987) 218.
- 5) K.Greisen : Progress in Cosmic Ray Physics III (ed. by J.G. Wilson, 1956) 27.
- 6) H.Sakuyama et al., Proc. of the 24th ICRC, Roma, Vol.1(1995) 325.

32