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DISCRETE LIMIT ANALYSIS OF PLAIN CONCRETE BEAMS
USING RBSM WITH VORONOI MESH DIVISION

Norio TAKEUCHI*

1. INTRODUCTION

RBSM is a numerical analysis method developed as a limit analysis of struc-
tures, in which the total structure is idealized as an assemblage of rigid body
elements connected by two kinds of distributed springs [1]. This idealization can
read the comprehensive expression of discontinuous phenomenon due to cracking
and slippage that significantly affects a failure of concrete structures [2] [3].
However, the RBSM solution on failure modes tends to be controlled by its ele-
ment division, because the strain energy is evaluated along its element bound-
aries. When the failure mode cannot be included in the mesh division, then the
over - estimated solution on collapse loads is obtained [4]. Further, the method
requires skill because cracking patterns depend upon the uncertainty in the distri-
bution of the material strength,

Voronoi tessellation was introduced into the element division of RBSM to
numerically examine the constitutive relation of materials by TOI et al. [5] The
tessellation is directly adopted as element of RBSM that can accept arbitrary
polygonal elements, However, it was difficult to make the mesh division of the
polygons manually, because they are formed to equalize every territory of their
reference points [6]. Thus, the author developed a computer aided system to
automatically form the tessellation, using computer - generated, pseudo ~random
numbers as their reference points,

In this study, the geometry of Voronoi element division by the developed sys-
tem is examined, and the applicability of RBSM with the Voronoi elements to
the discrete limit analysis of plain concrete beams is discussed including the size
effect on strength of the beams. The beams to be analyzed are subjected to
pure bending, in which the distribution of the material strength affects the initia-
tion and the propagation of cracking.

2. CHARACTERISTICS OF PSEUDO-RANDOM NUMBERS

Pseudo-random numbers generated by computer according to the linear congru-
ence method were used herein as the reference points of Voronoi polygons.
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Because the geometry of Voronoi polygons depends upon their reference points
to the pseudo-random numbers, those numbers were examined first.

The concept of the fractal, which is a shape with self - similarity, was
introduced to quantitatively examine the distribution of the random numbers.
The box cutting method was employed as shown in Fig.1. The coupled random
numbers were plotted as closed circles, distributed over a square region of side
L. The region was then subdivided into square boxes of side /, in which shaded
boxes have no circles.

The relation among !/L and the total boxes with the couples were shown in
Fig.2 on a logarithmic scale. In this figure, the absolute value of the gradient
is the fractal dimension which shows the statistical self - similarity. The fractal
of. the distribution can be found when the total exceeds 500, since the regression
line indicating the fractal dimension could be fairly well drawn. It was decided
that more than 500 points of the pseudo - random numbers were uniform enough
to be adopted as the reference points.
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Fig.1 Grid division by square domain Fig.2 Fractal-curve of random numbers

3. GENERATION OF VORONOI TESSELLATION

Voronoi tessellation can be formed by connecting the circumcentres of the
Delaunay triangle network as shown in Fig.3, in which the reference points are
used as the apexes of the triangle. The geometry of the polygons is consistent
with RBSM formulation, in which strain is evaluated by a finite different
scheme with the interval of the length between the centroids of the neighbor ele-
ments, because the lines between the centroids of the neighbor polygons cross
their boundary lines perpendicularly.

Fig.4 shows an example of the polygons formed with 1000 reference points of
random numbers according to the linear congruence method, in which small
polygons due to the characteristics of pseudo-random numbers can be seen.

The evaluation on element size is required for nonlinear analysis of concrete
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structures where the close relationship between crack opening width and fracture
energy has been recognized. Therefore, the frequency of the element area was
examined as an index of element size,

In Fig.5, the horizontal axis indicates the ratio of an element area A to a
mean element area in the percentage of the frequencies. This figure is an exam-
ple for 1000 reference points of random numbers and their similar tendencies. It
shows that the maximum frequency occurred at less than 1 of A/Apean, When
the number of the points increased. Fig.6 shows the distribution of the apexes
of an element and it can be shown that the major shape was a hexagon, which
is generally regarded as stable in nature.

Fig.7 shows the distribution of the lengths and the directions of the element
boundaries in Fig.5 in the polar coordinate system, which is an example of
when the initial values of the generation were set at 17 and 31.

Fig.8 shows another example of when they were set 1 and 4. Fig.7 shows a
uniform distribution, while in Fig.8, obvious orientation to 135 degrees can be
found. Thus, attention should be paid to such orientation due to pseudo ran-
dom numbers.

Fig.8 Distribution of the lengths and the directions of the element boundary (directional)
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4. CONSTITUTIVE LAW OF CONCRETE

The broken line on Fig.9 shows the uniaxial stress - strain curve of the con-
crete. In the numerical calculations, this curved line is approximated according
to the trilinear solid line, In this paper, F. being the compressive strength, the
first yield level F.;, = 0.5F;, the second yield level F., = 0.95F., and the
reduction ratio of the stiffness § = (0.5. After the second yielding at ec

(0.3%), F.. is maintained until collapse. Beyond this point, until reaching
2¢&q, the stress decreases with a corresponding increase in the strain, and it
stays finally at 0.2F.. The tension - softening effect is thereby taken into consid-
eration. The tensile stress is released going along the cubic equation of strain.
However, in this study, the linear function connecting with (F., &) and (0,ne;),
is introduced and n = 40, 20 or 10 are used, considering size effect,

The shearing slippage surface is defined by Mohr - Coulomb’s criterion, and
after yielding, the associated flow rule is employed, and moves on the surface.
Based on the supposition above, Fig.10 shows the yield and collapse surface of
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Fig.9 Stress-strain relationship for concrete
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Fig.10 Yield and collapse surface for concrete
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concrete using RBSM. The state (@ shows elasticity, the surface (O is cracking,
the state (@ is the condition where the residual stresses become zero, in Fig.9,
that is a state of tension on the left side from ne.. The state (3 shows first
vield, the surface (@ shows second yield, and the state (§) is the normal strain
having the condition reached at the strain limit e of Fig.9. The surface ®
shows shear slipping. After this state, in the case where first yield compression
of the state (3 has occurred, the state follows the stage in the surface G.

5. NONLINEAR ANALYSIS ALGORITHM

In concrete structures, shapes change as cracking develops, and then stress is
released on the cracking surface. The released stress or load leads to a decline
of convergence of solutions near and at the ultimate stage of loading. To over-
come this condition, we proposed an algorithm for material nonlinear analysis
[3] [10], in which rp;,, method [9] was modified to add the released force to the
remaining load while counting the applied load, and to simultaneously take into
account the slip, cracking and compressive failure,

However, the algorithm is to be originally applied to an incremental load
method. This method is inadequate to simulate the crack propagation in detail,
because the failure of plain concrete beams under bending is brittle, The algor-
ithm can also be applied to an incremental displacement method if the in-
cremental displacement is taken as external force. Thus, the following nonlinear
analysis was carried out according to an incremental displacement method.

6. ANALYSIS OF PLAIN CONCRETE BEAMS

Using RBSM with Voronoi elements, the analyses of the plain concrete beams
as shown in Fig.11 were carried out to examine the size effect. Three beams
with different heights were analyzed. Specimen No.1, No.2 and No.3 had 5cm,
i0cm and 20cm heights respectively. Further, two cases of element divisions
were used. One had almost the same elemental area for each specimen, and the
other had the same number of elements.

sle
h/2 h/2
(h=50,100,200mm)

Fig.11 Analyzing mode! of plain concrete beam



121

T TN IR INTZS
AR
4“‘"
Ny

2 ey
[y

X K
SR
o 84120%)
NS
2

No.3 specimen (3202 elements)

Fig.12 Voronoi elements of a plain concrete beam ( same average area )

6.1 Numerical example with same areas of Voronoi elements

The element divisions for all specimens were made to have almost the same
average areas, about lcm?, and number of elements were about 200, 800 and
3200 respectively, for No.1l, No.2 and No.3. Moreover, another element divi-
sion for all specimens were also prepared with the different initial values of the
random number for element generation. Fig.13 is an example of element divi-
sions. Table 1 shows the material constants used. Those values and the critical
tensile strain of 20e& in strain softening curve evaluated by fracture energy were
commonly used for all specimens.

An example of crack propagation is shown in Fig.13, in which several initial
cracks were observed in and around pure bending regions, and then they grew

Before collapse Before collapse
&M =0.36x103 8 = 0.35x10-3
' l.‘ Il P TAEAN
[ |8 [ =] Lf
Final collapse Final collapse
8 =0.72x10°3 5Mm=0.61x10"3
\\r( | f
U ) U s ) —
(a) No.2 specimen (800 elements) (b) No.3 specimen (3202 elements)

Fig.13 Crack patterns of plain concrete beam(same average area)
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Table 1. Material property constants of concrete

Compressive strength (F.) 34.3MPa
Tensile etrength (F,) 2.9 MPa
Cohesive strength(c) 4.7 MPa
Angle of friction(¢) 37.0 deg.

Modulus of elasticity (E.) 27.5GPa

Poisson’s ratio(v) 0.2
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Fig.14 Load-Displacement relation (same element area)

Table 2. Maximum load (with the same area)

. Number of Max.Load 2
Specimen elements (kN) P/ (bF)

199 3.74 0.50

Nal
200 4.19 0.56
800 13.8 0.48

No2
798 14.1 0.49
3202 51.6 0.45

No3
3198 49.3 0.42

gradually, and consequently, a major crack in tension was formed which caused
the structural collapse.
The load carrying capacities and the relations between applied load and dis-
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placement are shown in Table 2 and Fig.14, respectively.

In these examples where an identical strain softening curve was used, the
solutions of these specimens with different heights, both on the crack propaga-
tion and the normalized strength, were somewhat different. When the specimen
size was longer, the P/h?F, value decreased as shown in Fig.17. This shows the
size effect.

6.2 Numerical example with the same number of Voronoi elements
To analyze the specimens with the same number of elements, the element divi-

U
No.1 specimen (800 elements) No.2 specimen (800 elements)

m 0

LJ [

No.3 specimen (800 elements)

Fig.15 Voronoi elements of plain concrete beam (same number of elements)

n n
Before collepse (& /h=0.35x10-3)

LI U

Final collapse (8 /h=0.61x10-3)

L : L

Fig.16 Crack patterns of plain concrete beams ( the same number of element )
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sion for No.2 was made as shown in Fig.15. In the case of No.3 specimen, the
critical tensile strain in the strain - softening curve was set at 10&, and in case
of No.1 it was set at 40&. Other constants were the same as Table 1.

Fig.16 shows the crack propagation for specimen No.2, and the load carrying
capacities for both are also listed in Table 3. The differences on the former
between two specimens was slight, while that of the latter was enough to show
the size effect, which was probably caused by that of the strain - softening curve
in tension.

The numerical results obtained in this section are plotted in Fig.17, in which
the vertical and the horizontal axis are bending strength and beam height,
respectively, and the lines also show the experimental results. This figure shows
that the degradation of the strength for a higher specimen due to size effect
was observed numerically.

Table 3. Maximum load (with same number of element)

Number of . Max.Load s
elements Specimen (kN) P/ (b*F)
Nol 4.3 0.57
800 No2 13.8 0.48
Nao3 44.7 0.39
Nol 4.4 0.58
798 No2 14.1 0.49
No3 43.3 0.37
2.5
O A © No.1,No.2,No.3 (the same no. of elements)
A & No.1No.2,No.3 (the same elemen area)
€ 201
=
=
50
5 15[
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5 10 4 experiment [11]
/A ---Uchida et al.[11] (Ich=44.8cm)
— Uchida et al.[11] (fch=33.3cm)
0.5 1 i Illllll 1 1 1 1 3.1 1%
1 10 100

Fig.17 The height of beam-bending strength relationship
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7. CONCLUSIONS

The collapse analysis of plain concrete beams has been carried out by using
RBSM with an automatic mesh generating system of Voronoi polygons. The
conclusions obtained are as follows:

1) The fractal of the random numbers generated by computer according to the
linear congruence method was observed when the total numbers exceeded
500. It could be analogically judged to guarantee the fractal of more than
500 Voronoi polygons based on the random numbers.

2) The validity of RBSM with Voronoi elements has been verified for the non-
linear analysis of concrete structures up to failure including discontinuous
phenomenon due to cracking, even if the failure mode could not be
presumed,

3) The size effect of concrete structures could be considered when the strain -
softening curve under tension was defined by fracture energy.

The size effect has been generally recognized to be caused by the reasons that follow:

1) Concrete is not homogenous and there is a probability of how the strength
and the defect will be distributed.
2)Shrinkage varies with the size of the concrete member.

It should be required to examine concrete from a microscopic viewpoint, to
see if the size effect can be observed numerically when the defect and the
strength are distributed according to a probability along the boundaries of Vor-
onoi elements.
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