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On the Limit Analysis
of Soil and Rock Foundations

Including the Effect of Tensile Cracking

Norio TAKEUCHI*

1. INTRODUCTION

The finite element method was developed by structural engineers in aerospace
industries and made remarkable progress with the advancement of the computer
industry [1]. It has become one of the most useful tools for structural analysis
and also has been used for analysis of soil and rock foundation structures.

To consider the soil and rock materials as continua they are generally too
nonuniform, inhomogeneous and too easy to slip internally under applied load-
ing. On the other hand, granular materials’ influence on crack initiation due to
tensile load should not be neglected. Therefore, in the case of stability analysis
of foundations, it is necessary to consider two failure patterns. One is slip fail-
ure, and the other is tensile cracking, including contact problems.

The finite element method, however, treats the soil and rock foundations as
continuous materials. GOODMAN developed the joint element to be inserted
between constant strain elements in which the effect of discontinuity is taken
into account [2]. For finite element analysis of reinforced concrete structures,
NGO and others proposed a similar element that is called the linkage element

[3]. In the past some work has been carried out along this line[4] [5]. Accord-
ing to these methods it may be possible to obtain reasonable results for the
problems where discontinuous surfaces are prescribed. In real soil and rock foun-
dations, such discontinuous faces are not a priori known and therefore applica-
tion of this method may be limited.

On the other hand, Prof. KAWALI proposed a family of new discrete models
in 1976 based on experimental evidence on the flow and fracture of solids [6]. In
these models structures or solids are idealized as a set of rigid elements inter-
connected by two types of spring systems, one of which resists the dilatational
deformation, the other, the shearing deformation. Therefore sliding or separa-
tion of two adjacent elements can be calculated easily.

Formerly, the author individually analyzed slip failure and tensile cracking in
stability problems of foundations, using the Rigid Bodies-Spring Model (RBSM).
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However, coupled failure may be generated in the foundations. Therefore, we
developed a new algorithm which may be applicable in analysing the coupled
failure of solids due to slipage, tensile cracking and solid contact.

In this paper, the theoretical basis of this algorithm is described first, and
then the applicability of the method to the stability problems of foundations is
discussed.

2. FORMULATION OF A TWO DIMENSIONAL RBSM

For explaining the formulation of a two dimensional RBSM, we considered
two rigid triangular elements as shown in Fig.1. Of course, an arbitrary poly-
gon or circle can be used instead of a triangular element. They are assumed to
be in equilibrium with external loads and reaction forces of the spring system
which are distributed over the contact surface of two adjacent bodies.

The rigid displacement field is assumed in each element, whose nodal displace-
ments are given by the displacement (u,v,#) of the centroid as shown in Fig.1.
Horizontal and vertical displacement U, V at the arbitrary point P can be
shown by the following equations :

Fig.1 Two dimensional rigid triangular element

U-Q-u: (1
10 —(y—w) 10 0 0
U= U,V;U,V t H
U Vi;Un, Vi) @-|0. L. (Ezmi0 0 0.
u={2,,01,01;24,02,6,}* - K B
i 1, V1, Ul H2,U2,Uz2 O O 0 :O 1 (.Z‘_Iz)

where subscript I, II or 1, 2 indicate element number 1 or 2, respectively.
(x1,1) and (x2,y.) are the coordinate values of the centroid for each element.
The relation of the displacement between the global coordinate system and the
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local coordinate system along the side 34 of the triangular element is derived by
the following matrix equation :

U=R-U @)
L mi0 0 h=cos(x ,x)=yus/ L
_____ L mi0 0 b=cos(x ,y)=Tss/ ks
U={U,V;UnVa)t  R=|Z---stioe. =
{ULYVUn, Vi) 0 0 4 my 1=co8( ¥ ,x)=Zss/ ks
0 0 b m my=c08( ¥ ,)=vss/ bss

where 4 is the length of side 34,x;=x:—x;, the superscript (-) indicates the
local coordinate system and R is a coordinate transformation matrix.

Using these displacements (U, V) with the local coordinate system, the rela-
tive displacement vector & of the point P can be derived as follows :

8=M-U (3)
-1 0:1 0
0={0,,0s)" M= '
{ ) l: 0 —-1:0 IJ

Therefore,substituting eq. (1) and eq.(2) into eq.(3), the following relation
with the rigid displacement field is easily obtained :

8=MR-Q+u=B-u; (B=M-R-Q) (4)

=L i—mihy—w) (=) b oy L — Ly — ) Fn(c—x)

e S e R
[—é bt by —y) ez —x)i b —lz(y—yz)+mz(x—xz)]

The spring constants %, and ks which resist normal and tangential force
respectively on the contact surface between element I and element II can be
determined systematically by using the finite difference equation for strain com-
ponents as follows :

e M ®)

where /1 = In+1. is the projected length of a vector connecting centroids along
the line perpendicular to AC, as shown in Fig.2.

On the contact surface AC shown in Fig.2, the normal and tangential stresses
on, Ts satisfy the following equations :
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C

Fig.2 Definition of the projected length

_ (=»E __FE
G A—ay+rm et * a4 ¢ (6)

Substituting eq.(5) into eq.(6), the following relation can be obtained :

o (1—v)E On
T (1-20)1+v) Inth

B &
s (1+V) hl+]72

7

On the other hand, from the definition of the spring constants, the following
relations are obtained :

On=kn*On , Ts=ks*Os (8)
Therefore, comparing equations (7) and (8), the following spring constants

can be assumed :

e (1-1)E
A= 20) A+ )+ )

oo E
s (1 + V)(hl + hz)

(9

From eq.(9) the stress-relative displacement relation is derived by the following
matrix equation :

o=D-¢ (10)

0={0n 1S}’ |:k,, 0]
6:{6’165})! 0 ks

Based on the above preliminaries, the strain energy expression of the in-plane
element V can be obtained as the following matrix equation :
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v=s [ 8'D-8ds=ut[ (B"D-B)s-u, (11)

Applying Castigliano’s theorem to eq. (11) the following stiffness equation can
be derived :

%ﬂ(- u-P (12)

where K is a (6X6) symmetric matrix and P is a nodal load vector defined by
the following equation :

P={X,Y,,M; X, Y2 M} (13)

3. CONSTITUTIVE LAW FOR THE DISCRETE LIMIT ANALYSIS

In the RBSM, the author considered that reaction stresses are not tensor but
vector, and consequently Coulomb’s condition may be the most realistic con-
stitutive law for such a discrete system representing granular materials. As is
well known, Coulomb’s condition can be represented by two straight lines which
relate the normal stress o, and the shearing stress zs. The yield condition of
soil-like materials can be modified as shown in Fig.3.

Shear Failure Region ¢

A
o}
C
Elastic Region \I Tensﬂe Failure Region
J » T
C

/

Fig.3 Modified Coulomb’s condition where the tensile failure is considered

Mixed Failure Region

If on reaches 6., 6 cannot become greater than this value and therefore the
relation between normal stress and strain can be shown as in Fig.4 (a). This is
the state of tensile yielding. In the case of granular materials like soils, it is
commonly observed that ¢ is relieved as soon as it reaches o; as shown in
Fig.4 (b). In this paper a new algorithm is proposed by assuming the spring
characteristic as shown in Fig.4 (b) under tensile failure.
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(a)tensile yielding (b)tensile fracture

Fig.4 Stress-strain relation at the tensile failure

On the other hand, for determination of spring constants in shear failure, the
ordinary plastic flow rule is adopted. It is assumed that plastic yielding will
occur if stresses in these spring systems satisfy the following condition :

f(o)=0 (14)

where f(0) is the yield function in the flow theory of plasticity.

Based on the associated flow rule in which yield function f is equal to plastic
potential @, the relation between stress increments A¢ and strain increment Ae
can be finally obtained in the following form :

df 9@
(e Y Y €)
D596 P

O n@dQ
26 %56

Ac=| DV Ae (15)

where D is the spring matrix and superscript (e) indicates the status of elastic-
ity. Therefore, the plastic spring matrix can be obtained as follows :

ki(}’)= A(l_e) Si— ;ﬁk(ie) e
&) Zk&e)?l_z 7 7
=2k, otone) (16)

where £;$? is the elastic spring constant and 4% is the diagonal term of the
spring matrix.

4. A PROPOSED ALGORITHM FOR NONLINEAR ANALYSIS

A new algorithm is proposed by applying the incremental load procedure devel-
oped by YAMADA [7] for the nonlinear problem of soil foundations whose fail-
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ure condition is described in the preceding section. In this method ( Rmin
method ), the rate of load increment to vield the most heavily stressed element
can be calculated by stress distribution and load increment at the present stage
as shown in Fig.5.

C
g
AB
B r=52
A 9 AC
1 N
-C

Fig.5 Rate of load increment in the case of shear failure

In this figure, point A represents the stress condition at the previous step,
while point C signifies the stress state at the present step. However, the stress
equilibrium actually cannot go to point C but must stop at point B on the fail-
ure curve. In this condition the required rate of load increment r can be calcu-
lated. Once the stress point lies on the failure curve, it may move according to
the plastic flow rule until the unloading occurs.

A similar calculation must be made for tensile failure as shown in Fig.6.
Point B represents the tensile strength in this figure. When the stresses exceed
the tensile strength, the stresses should be reduced to the level corresponding to
point B using this rate of stress increment. And then stress (o,) must be
relieved in that element as shown in Fig.4 (b). Following this operation, both
normal and shear springs should be cut to prevent the stress transfer through a
common boundary until recontact of these elements occurs.

Fig.6 Rate of load increment in the case of tensile failure

All of the possible rate of load increments corresponding to the failure pat-
terns should be calculated in all of the elements, and the minimum rate of load
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increment must be determined at each step.

The stress relaxation is usually followed by tensile failure. If the load in-
cremental method is applied to the stress relaxation process exactly, endless cal-
culation should be repeated corresponding to the tensile failure which may occur
continuously. Therefore, a supplement of the operation as shown in Fig.7 is to
be considered in the iteration at the present loading step.

The load PU*Y at the (;+1) th step can be calculated by using the load P
and the rate of load increment 7: at the present step (7) as follows :

PU+D=(] — ) PO )

Therefore, in the case of shearing failure, residual load P™ at the nth step can
be obtained by using initial load P as follows :

P"”;I;I: [1—#]P (75=0) (18)

On the other hand, if crack initiation will cause stress relaxation, relieved
forces are taken into account in eq. (18) as follows :

ne1 n n
po-Tl 1] P+ Y () 1=r] o) (19)
i=0 k=1 i{=Fk
where F* is the relieved force at the /th step.
Here #rorar implies the cumulative rate of load increment and it can be
defined as follows :

n k-1
7‘T07'AL=Z<Z [1— 7‘:‘])"}: (20)
k=1 =0
The calculation must be repeated until 77m:=1 in each stage of loading.

The rate of load increment specified before calculation may change due to
stress relaxation caused by crack initiation. Therefore in this case the concept
of 7rorar may not be correct, but the process of progressive failure may be ob-
served. If #rorar =1 is realized, however, the iteration must be stopped and the
result of the calculation may be considered reliable.

5. NUMERICAL EXAMPLE

As a numerical example, the behavior of an anchor block in the soil founda-
tion subjected to a horizontal force is studied. As shown in Fig.7 (a) tensile
stress may be induced in the rear vertical wall of a given block and a cavity
may be produced due to tensile cracking as shown in Fig.7 (b)
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(a) before deformation (b)after deformation

Fig.7 Anchor block subjected to horizontal force

Fig.8 shows the numerical model and material constants used. In the present
analysis, the effect of the gravitational load was neglected.
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Fig.8 Numerical model and material constants

Fig.9 shows the pattern of the mesh division. The number of the nodes and
elements were 234 and 454 respectively, and the total numbers of the interele-
ment springs and degrees of freedom were 657 and 1362 respectively.

Fig.9 Mesh division

Fig.10 shows the pattern of slip line development in the solution obtained
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using discrete limit analysis without the effects of tensile cracking at P=79.7t.
As will be seen in the figure, the slip lines were developed on the rear wall of
a given block and it is not considered a realistic scenario. Fig.1l shows the dis-
placement pattern from which it can be clearly seen that the soil behind the
block was stretched by the block. Actually the soil must separate from the con-
crete block and it can be concluded that only the previous slip failure analysis,
without tensile cracking, cannot present a realistic solution.

STAGE 1 STEP 100 (P=79.71)

Fig.10 Slip line pattern without the effect of tensile failure

STAGE 1 STEP96

Fig.11 Displacement pattern without the effect of tensile failure

On the other hand, Fig.12 shows patterns of slip development where the effect
of tensile failure is considered. In this figure it can be seen that not only slip
lines but also tensile cracking may spread on the front region of a given block
and the displacement mode may be considerably different from that of the previ-
ous solution. The load was applied in a step by step manner, taking the incre-
ments as 10t, 10t, 5t, 5t and 5t. Fig.12 shows the slip line pattern of the solu-
tion at step 5.



STAGE S

STEP 21

SLIP LINE

TENSILE CRACK

STAGE 5

Fig.12 Slip line pattern

STEP 21

/|

The failure mode and displacement field corresponding to this step are shown
in Fig.13 and Fig.14, respectively. From this figure, separation of the soil on
the rear wall of the block and rise of the displacement field near the front wall

can be seen.

Fig.13 Displacement mode
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Fig.14 Load-displacement curve

Finally the load - displacement relationship is given in Fig.14. It can be seen
from this figure that the displacement corresponding to the latter solution is
greater than that of the former, while the load is smaller.

6. CONCLUSION

A new algorithm was developed by which coupled failure due to shear and ten-
sile loads can be treated. Although a numerical example is very simple, it is
believed that the present method may be useful in failure analysis of various
structural problems in many other fields.

It can be concluded that, comparing this simulation technique with the previ-
ous solution procedure, the number of ’if’ sentences may increase resulting in
time-consuming calculation, but a more realistic analysis can be expected.
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