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Abstract. Let G(λ) be a group scheme which deforms the additive group scheme Ga to the mul-

tiplicative group scheme Gm. We consider the short exact sequence

0 −−−−−→ Nl
ι−−−−−→ Ĝ(λ) ψ(l)

−−−−−→ Ĝ(λpl ) −−−−−→ 0

induced by a Frobenius-type surjective homomorphism ψ(l), where Ĝ(λ) is the formal completion of

G(λ) along the zero section. In this case, we show that the sequence

0 −−−−−→ Hom(Ĝ(λpl ), Ĝm)
(ψ(l))∗−−−−−→ Hom(Ĝ(λ), Ĝm)

(ι)∗−−−−−→ Hom(Nl, Ĝm) −−−−−→ 0

is exact in positive characteristic p. After this, the injection

Ext1(Ĝ(λpl ), Ĝm) ↪→ Ext1(Ĝ(λ), Ĝm) (resp. H2
0 (Ĝ(λpl ), Ĝm) ↪→ H2

0 (Ĝ(λ), Ĝm))

is obtained.

1. Introduction

Throughout this paper, we denote by p a prime number. Let A be a Z(p)-algebra and λ a

suitable element of A, where Z(p) is a localization of rational integers Z at p. The group scheme

G(λ) = SpecA[T, 1/(1 + λT )] which deforms the additive group scheme Ga to the multiplicative

group scheme Gm has been constructed by [7]. Then G(λ) has been studied in detail by [4] for the

purpose of unifying Kummer theory and Artin-Schreier theory.

Let l be a positive integer. For any 1 ≤ i ≤ pl, there exist ki uniquely such that pki ≤ i < pki+1.

Note that 0 ≤ ki ≤ l for any i = 1, 2, . . . , pl. For each integer 0 ≤ k ≤ l − 1, we take λ, νk ∈ A

such that pl−kλpk = νkλ
pl . Put ψ(l)(X) :=

pl−1∑
i=1

aiX
i +Xpl , where ai =

(
pl

i

)
p−(l−ki)λriνki . Then

ψ(l)(X) satisfies λplψ(l)(X) = (1 + λX)p
l − 1. For a group scheme G, we denote by Ĝ the formal

completion along the zero section. For an endomorphism

ϕ : Ĝm,A → Ĝm,A; t �→ tp
l
,

we obtain the commutative diagram

Ĝ(λ) α(λ)

−−−−→ Ĝm,A

ψ(l)

�
�φ

Ĝ(λpl ) α(λp
l
)

−−−−→ Ĝm,A,
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where α(λ)(x) = 1 + λx. Then

ψ(l) : Ĝ(λ) → Ĝ(λpl ); x �→ ψ(l)(x)

is a well-defined surjective homomorphism with Nl := Ker(ψ(l)). Note that Nl is a finite group

scheme of order pl, under the assumption that A is an Fp-algebra. Then the author has determined

the Cartier dual of Nl in [1]. The following short exact sequence is induced by ψ(l):

0 −−−−→ Nl
ι−−−−→ Ĝ(λ) ψ(l)

−−−−→ Ĝ(λpl ) −−−−→ 0,(1)

where ι is a canonical inclusion. The exact sequence (1) deduces the long exact sequence

0 −−−−→ Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−−−→ Hom(Nl, Ĝm,A)

∂−−−−→ Ext1(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Ext1(Ĝ(λ), Ĝm,A) −−−−→ · · · .

Since the image of the boundary map ∂ is given by direct product of formal schemes, we can

replace Ext1(Ĝ(λ), Ĝm,A) (resp. Ext1(Ĝ(λpl ), Ĝm,A)) with H2
0 (Ĝ(λ), Ĝm,A) (resp. H2

0 (Ĝ(λpl ), Ĝm,A)).

Therefore the long exact sequence

0 −−−−→ Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−−−→ Hom(Nl, Ĝm,A)

∂−−−−→ H2
0 (Ĝ(λpl ), Ĝm,A)

(ψ(l))∗−−−−→ H2
0 (Ĝ(λ), Ĝm,A) −−−−→ · · ·

is obtained. Then the main result of this paper is:

Theorem 1. Let A be an Fp-algebra. With these notations, we have the short exact sequence:

0 −−−−→ Hom(Ĝ(λpl ), Ĝm)
(ψ(l))∗−−−−→ Hom(Ĝ(λ), Ĝm)

(ι)∗−−−−→ Hom(Nl, Ĝm) −−−−→ 0.

Theorem 1 is obtained by showing that

(ι)∗ : Hom(Ĝ(λ), Ĝm,A) → Hom(Nl, Ĝm,A)

is a surjective homomorphism (for the proof, see Section 4). By using Theorem 1, the equality

Ker(ψ(l))∗ = 1 is immediately shown. Then we have:

Corollary 1. Let A be an Fp-algebra. With the above assumptions, there exists the injection

(ψ(l))∗ : Ext1(Ĝ(λpl ), Ĝm) ↪→ Ext1(Ĝ(λ), Ĝm) (resp. (ψ(l))∗ : H2
0 (Ĝ(λpl ), Ĝm) ↪→ H2

0 (Ĝ(λ), Ĝm)).

The contents of this paper are as follows. The next two sections are devoted to recalling the

definitions and some properties of the Witt scheme and of the group scheme which deforms Ga to

Gm. In Section 4 we give the proof of Theorem 1.

Throughout this paper, we use the following notations:

2

Ga,A : additive group scheme over A,

Gm,A : multiplicative group scheme over A,

Ĝm,A : multiplicative formal group scheme over A,

Wn,A : group scheme of Witt vectors of length n over A,

WA : group scheme of Witt vectors over A,

F : Frobenius endomorphism of WA,

V : Verschiebung endomorphism of WA,

[λ] : Teichmüller lifting (λ, 0, 0, . . .) ∈ W (A) of λ ∈ A,

F (λ) : = F − [λp−1],

Ta : homomorphism decided by a ∈ W (A) (recalled in Section 2),

W (A)F
(λ)

: = Ker[F (λ) : W (A) → W (A)],

W (A)/F (λ) : = Coker[F (λ) : W (A) → W (A)],

Ext1(G,H) : isomorphism classes of extensions of G by H,

H2
0 (G,H) : Hochschild cohomology of G with coefficients in H.

2. Witt vectors

In this short section, we recall the necessary facts on Witt vectors in this paper. For details, see

[2, Chap. V] or [3, Chap. III].

2.1. Definition of Witt vectors. Let X = (X0, X1, . . .) be a sequence of variables. For each

n ≥ 0, we denote by Φn(X) = Φn(X0, X1, . . . , Xn) the Witt polynomial

Φn(X) = Xpn

0 + pXpn−1

1 + · · ·+ pnXn

in Z[X] = Z[X0, X1, . . .]. Let WZ = SpecZ[X] be an ∞-dimensional affine space over Z. The

phantom map Φ is defined by

Φ : WZ → A∞
Z ; x �→ (Φ0(x ),Φ1(x ), . . .),

where A∞
Z is the usual ∞-dimensional affine space over Z. The scheme A∞

Z has a natural ring

scheme structure. It is known that WZ has a unique commutative ring scheme structure over Z
such that the phantom map Φ is a homomorphism of commutative ring schemes over Z. Then

A-valued points WZ(A) are called Witt vectors over A.

2.2. Some morphisms of Witt vectors. We define a morphism F : W (A) → W (A) by

Φi(F (x )) = Φi+1(x )

for x ∈ W (A). If A is an Fp-algebra, F is nothing but the usual Frobenius endomorphism. Let [λ]

be the Teichmüller lifting [λ] = (λ, 0, 0, . . .) ∈ W (A) for λ ∈ A. Then we set the endomorphism

F (λ) := F − [λp−1] of W (A).

For a = (a0, a1, . . .) ∈ W (A), we also define a morphism Ta : W (A) → W (A) by

Φn(Ta(x )) = a0
pnΦn(x ) + pa1

pn−1
Φn−1(x ) + · · ·+ pnanΦ0(x )

for x ∈ W (A) ([5, Chap.4, p.20]). Then the morphism Ta is called T -map.

3. The group scheme G(λ) which deforms Ga to Gm

In this short section, we recall necessary facts on the group scheme G(λ) which deforms Ga to

Gm for this paper.
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Ga,A : additive group scheme over A,

Gm,A : multiplicative group scheme over A,

Ĝm,A : multiplicative formal group scheme over A,

Wn,A : group scheme of Witt vectors of length n over A,

WA : group scheme of Witt vectors over A,

F : Frobenius endomorphism of WA,

V : Verschiebung endomorphism of WA,

[λ] : Teichmüller lifting (λ, 0, 0, . . .) ∈ W (A) of λ ∈ A,

F (λ) : = F − [λp−1],

Ta : homomorphism decided by a ∈ W (A) (recalled in Section 2),

W (A)F
(λ)

: = Ker[F (λ) : W (A) → W (A)],

W (A)/F (λ) : = Coker[F (λ) : W (A) → W (A)],

Ext1(G,H) : isomorphism classes of extensions of G by H,

H2
0 (G,H) : Hochschild cohomology of G with coefficients in H.

2. Witt vectors

In this short section, we recall the necessary facts on Witt vectors in this paper. For details, see

[2, Chap. V] or [3, Chap. III].

2.1. Definition of Witt vectors. Let X = (X0, X1, . . .) be a sequence of variables. For each

n ≥ 0, we denote by Φn(X) = Φn(X0, X1, . . . , Xn) the Witt polynomial

Φn(X) = Xpn

0 + pXpn−1

1 + · · ·+ pnXn

in Z[X] = Z[X0, X1, . . .]. Let WZ = SpecZ[X] be an ∞-dimensional affine space over Z. The

phantom map Φ is defined by

Φ : WZ → A∞
Z ; x �→ (Φ0(x ),Φ1(x ), . . .),

where A∞
Z is the usual ∞-dimensional affine space over Z. The scheme A∞

Z has a natural ring

scheme structure. It is known that WZ has a unique commutative ring scheme structure over Z
such that the phantom map Φ is a homomorphism of commutative ring schemes over Z. Then

A-valued points WZ(A) are called Witt vectors over A.

2.2. Some morphisms of Witt vectors. We define a morphism F : W (A) → W (A) by

Φi(F (x )) = Φi+1(x )

for x ∈ W (A). If A is an Fp-algebra, F is nothing but the usual Frobenius endomorphism. Let [λ]

be the Teichmüller lifting [λ] = (λ, 0, 0, . . .) ∈ W (A) for λ ∈ A. Then we set the endomorphism

F (λ) := F − [λp−1] of W (A).

For a = (a0, a1, . . .) ∈ W (A), we also define a morphism Ta : W (A) → W (A) by

Φn(Ta(x )) = a0
pnΦn(x ) + pa1

pn−1
Φn−1(x ) + · · ·+ pnanΦ0(x )

for x ∈ W (A) ([5, Chap.4, p.20]). Then the morphism Ta is called T -map.

3. The group scheme G(λ) which deforms Ga to Gm

In this short section, we recall necessary facts on the group scheme G(λ) which deforms Ga to

Gm for this paper.

33.1. Definition of the group scheme G(λ). Let A be a ring and λ an element of A. Put

G(λ) := SpecA[X, 1/(1 + λX)]. We define a morphism α(λ) by

α(λ) : G(λ) → Gm,A; x �→ 1 + λx.

It is known that G(λ) has a unique commutative group scheme structure such that α(λ) is a group

scheme homomorphism over A. Then the group scheme structure of G(λ) is given by x · y =

x+ y + λxy. If λ is invertible in A, α(λ) is an A-isomorphism. On the other hand, if λ = 0, G(λ) is

nothing but the additive group scheme Ga,A.

3.2. Deformed Artin-Hasse exponential series. The Artin-Hasse exponential series Ep(X) is

given by

Ep(X) = exp


∑

r≥0

Xpr

pr


 ∈ Z(p)[[X]].

We define a formal power series Ep(U,Λ;X) in Q[U,Λ][[X]] by

Ep(U,Λ;X) = (1 + ΛX)
U
Λ

∞∏
k=1

(1 + ΛpkXpk)
1

pk
((U

Λ
)p

k−(U
Λ
)p

k−1
)
.

As in [6, Corollary 2.5.] or [5, Lemma 4.8.], we see that the formal power series Ep(U,Λ;X) is

integral over Z(p). Note that Ep(1, 0;X) = Ep(X).

Let A be a Z(p)-algebra. For λ ∈ A and v = (v0, v1, . . .) ∈ W (A), we define a formal power series

Ep(v , λ;X) in A[[X]] by

Ep(v , λ;X) =

∞∏
k=0

Ep(vk, λ
pk ;Xpk) = (1 + λX)

v0
λ

∞∏
k=1

(1 + λpkXpk)
1

pkλp
k Φk−1(F

(λ)(v))
.

Moreover we define a formal power series Fp(v , λ;X,Y ) as follows:

Fp(v , λ;X,Y ) =

∞∏
k=1

(
(1 + λpkXpk)(1 + λpkY pk)

1 + λpk(X + Y + λXY )pk

) 1

pkλp
k Φk−1(v)

.

As in [6, Lemma 2.16.] or [5, Lemma 4.9.], we see that the formal power series Fp(v , λ;X,Y ) is

integral over Z(p).

4. Proof of Theorem 1

In this section we give a proof of Theorem 1.

Suppose that A is an Fp-algebra. Let l be a positive integer. For any 1 ≤ i ≤ pl, there exist ki
uniquely such that pki ≤ i < pki+1 and i = pki + ri. Note that 0 ≤ ki ≤ l for any i = 1, 2, · · · , pl.
For each integer 0 ≤ k ≤ l− 1, we take λ, νk ∈ A such that pl−kλpk = νkλ

pl . Let G(λ) be the group

scheme defined in Subsection 3.1 and Ĝ(λ) the formal completion of G(λ) along the zero section. We

put

ψ(l)(X) :=

pl−1∑
i=1

aiX
i +Xpl ∈ A[X]

where

ai =

(
pl

i

)
p−(l−ki)λriνki ∈ A.
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3.1. Definition of the group scheme G(λ). Let A be a ring and λ an element of A. Put

G(λ) := SpecA[X, 1/(1 + λX)]. We define a morphism α(λ) by

α(λ) : G(λ) → Gm,A; x �→ 1 + λx.

It is known that G(λ) has a unique commutative group scheme structure such that α(λ) is a group

scheme homomorphism over A. Then the group scheme structure of G(λ) is given by x · y =

x+ y + λxy. If λ is invertible in A, α(λ) is an A-isomorphism. On the other hand, if λ = 0, G(λ) is

nothing but the additive group scheme Ga,A.

3.2. Deformed Artin-Hasse exponential series. The Artin-Hasse exponential series Ep(X) is

given by

Ep(X) = exp


∑

r≥0

Xpr

pr


 ∈ Z(p)[[X]].

We define a formal power series Ep(U,Λ;X) in Q[U,Λ][[X]] by

Ep(U,Λ;X) = (1 + ΛX)
U
Λ

∞∏
k=1

(1 + ΛpkXpk)
1

pk
((U

Λ
)p

k−(U
Λ
)p

k−1
)
.

As in [6, Corollary 2.5.] or [5, Lemma 4.8.], we see that the formal power series Ep(U,Λ;X) is

integral over Z(p). Note that Ep(1, 0;X) = Ep(X).

Let A be a Z(p)-algebra. For λ ∈ A and v = (v0, v1, . . .) ∈ W (A), we define a formal power series

Ep(v , λ;X) in A[[X]] by

Ep(v , λ;X) =

∞∏
k=0

Ep(vk, λ
pk ;Xpk) = (1 + λX)

v0
λ

∞∏
k=1

(1 + λpkXpk)
1

pkλp
k Φk−1(F

(λ)(v))
.

Moreover we define a formal power series Fp(v , λ;X,Y ) as follows:

Fp(v , λ;X,Y ) =

∞∏
k=1

(
(1 + λpkXpk)(1 + λpkY pk)

1 + λpk(X + Y + λXY )pk

) 1

pkλp
k Φk−1(v)

.

As in [6, Lemma 2.16.] or [5, Lemma 4.9.], we see that the formal power series Fp(v , λ;X,Y ) is

integral over Z(p).

4. Proof of Theorem 1

In this section we give a proof of Theorem 1.

Suppose that A is an Fp-algebra. Let l be a positive integer. For any 1 ≤ i ≤ pl, there exist ki
uniquely such that pki ≤ i < pki+1 and i = pki + ri. Note that 0 ≤ ki ≤ l for any i = 1, 2, · · · , pl.
For each integer 0 ≤ k ≤ l− 1, we take λ, νk ∈ A such that pl−kλpk = νkλ

pl . Let G(λ) be the group

scheme defined in Subsection 3.1 and Ĝ(λ) the formal completion of G(λ) along the zero section. We

put

ψ(l)(X) :=

pl−1∑
i=1

aiX
i +Xpl ∈ A[X]

where

ai =

(
pl

i

)
p−(l−ki)λriνki ∈ A.

4Then ψ(l)(X) satisfies the equality

λplψ(l)(X) = (1 + λX)p
l − 1.

Hence

ψ(l) : Ĝ(λ) → Ĝ(λpl ); x �→ ψ(l)(x)

is a well-defined surjective homomorphism such that the following diagram is commutative:

Ĝ(λ) α(λ)

−−−−→ Ĝm,A

ψ(l)

�
�t �→tp

l

Ĝ(λpl ) α(λp
l
)

−−−−→ Ĝm,A.

The short exact sequence

0 −−−−→ Nl
ι−−−−→ Ĝ(λ) ψ(l)

−−−−→ Ĝ(λpl ) −−−−→ 0(2)

is induced by ψ(l), where ι is a canonical inclusion. The short exact sequence (2) determines the

long exact sequence

0 −−−−→ Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−−−→ Hom(Nl, Ĝm,A)

∂−−−−→ Ext1(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Ext1(Ĝ(λ), Ĝm,A) −−−−→ · · · .

Since the image of the boundary map ∂ is given by direct product of formal schemes, we can replace

Ext1(Ĝ(λ), Ĝm,A) (resp. Ext1(Ĝ(λpl ), Ĝm,A)) with H2
0 (Ĝ(λ), Ĝm,A) (resp. H2

0 (Ĝ(λpl ), Ĝm,A)). Hence,

we get the long exact sequence

0 −−−−→ Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−−−→ Hom(Nl, Ĝm,A)

∂−−−−→ H2
0 (Ĝ(λpl ), Ĝm,A)

(ψ(l))∗−−−−→ H2
0 (Ĝ(λ), Ĝm,A) −−−−→ · · · .

(3)

Here H2
0 (G,H) denotes the Hochschild cohomology group consisting of symmetric 2-cocycles of G

with coefficients in H for formal group schemes G and H ([2, Chap. II.3 and Chap. III.6]).

On the other hand, as in [6, Theorem 2.19.1] or the case n = 1 of [5, Theorem 5.1.], the following

morphisms are isomorphic:

Ker[F (λ) : W (A) → W (A)] → Hom(Ĝ(λ), Ĝm,A);(4)

v �→ Ep(v , λ;x)

Coker[F (λ) : W (A) → W (A)] → H2
0 (Ĝ(λ), Ĝm,A);(5)

w �→ Fp(w , λ;x, y).

Here we choose a ∈ W (A) such that Ta([λ
pl ]) = pl[λ], where Ta([λ

pl ]) = (λpla0, λ
pla1, . . .) for

a = (a0, a1, . . .). Then we set Wl,A(B) := Coker[Ta : WA(B) → WA(B)] for any A-algebra B.

Then Wl,A is a sheaf on A-algebras. In fact, for any A-algebra B, we have the following exact

sequence on the fppf site:

0 −−−−→ WA(B)
Ta−−−−→ W 2

A(B) −−−−→ W̃ 2
A/T0(B) −−−−→ H1(Spec(B),W 2

A),
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Then ψ(l)(X) satisfies the equality

λplψ(l)(X) = (1 + λX)p
l − 1.

Hence

ψ(l) : Ĝ(λ) → Ĝ(λpl ); x �→ ψ(l)(x)

is a well-defined surjective homomorphism such that the following diagram is commutative:

Ĝ(λ) α(λ)

−−−−→ Ĝm,A

ψ(l)

�
�t �→tp

l

Ĝ(λpl ) α(λp
l
)

−−−−→ Ĝm,A.

The short exact sequence

0 −−−−→ Nl
ι−−−−→ Ĝ(λ) ψ(l)

−−−−→ Ĝ(λpl ) −−−−→ 0(2)

is induced by ψ(l), where ι is a canonical inclusion. The short exact sequence (2) determines the

long exact sequence

0 −−−−→ Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−−−→ Hom(Nl, Ĝm,A)

∂−−−−→ Ext1(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Ext1(Ĝ(λ), Ĝm,A) −−−−→ · · · .

Since the image of the boundary map ∂ is given by direct product of formal schemes, we can replace

Ext1(Ĝ(λ), Ĝm,A) (resp. Ext1(Ĝ(λpl ), Ĝm,A)) with H2
0 (Ĝ(λ), Ĝm,A) (resp. H2

0 (Ĝ(λpl ), Ĝm,A)). Hence,

we get the long exact sequence

0 −−−−→ Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−−−→ Hom(Nl, Ĝm,A)

∂−−−−→ H2
0 (Ĝ(λpl ), Ĝm,A)

(ψ(l))∗−−−−→ H2
0 (Ĝ(λ), Ĝm,A) −−−−→ · · · .

(3)

Here H2
0 (G,H) denotes the Hochschild cohomology group consisting of symmetric 2-cocycles of G

with coefficients in H for formal group schemes G and H ([2, Chap. II.3 and Chap. III.6]).

On the other hand, as in [6, Theorem 2.19.1] or the case n = 1 of [5, Theorem 5.1.], the following

morphisms are isomorphic:

Ker[F (λ) : W (A) → W (A)] → Hom(Ĝ(λ), Ĝm,A);(4)

v �→ Ep(v , λ;x)

Coker[F (λ) : W (A) → W (A)] → H2
0 (Ĝ(λ), Ĝm,A);(5)

w �→ Fp(w , λ;x, y).

Here we choose a ∈ W (A) such that Ta([λ
pl ]) = pl[λ], where Ta([λ

pl ]) = (λpla0, λ
pla1, . . .) for

a = (a0, a1, . . .). Then we set Wl,A(B) := Coker[Ta : WA(B) → WA(B)] for any A-algebra B.

Then Wl,A is a sheaf on A-algebras. In fact, for any A-algebra B, we have the following exact

sequence on the fppf site:

0 −−−−→ WA(B)
Ta−−−−→ W 2

A(B) −−−−→ W̃ 2
A/T0(B) −−−−→ H1(Spec(B),W 2

A),

5where W̃A/Ta is the fppf-sheafification of WA/Ta . Since WA is a quasi-coherent sheaf, the coho-

mology is trivial. This shows

W̃A/Ta(B) � WA(B)/Ta(B) = Wl,A(B).

We consider the diagram

W (A)
π−−−−→ Wl(A)

F (λ)

�
�F (λ)

W (A)
π−−−−→ Wl(A),

where π is a natural projection and F (λ) is defined by F (λ)(x ) := F (λ)(x ). Then the homomorphism

F (λ) is well-defined and the above diagram is commutative, since F (λ) ◦ Ta(x ) = Ta ◦F (λpl )(x ) for

x ∈ W (A). Note that Ta = V l holds under the assumption that A is an Fp-algebra. Hence the

following diagram

0 −−−−→ W (A)
Ta−−−−→ W (A)

π−−−−→ Wl(A) −−−−→ 0

F (λp
l
)

� F (λ)

� F (λ)

�
0 −−−−→ W (A)

Ta−−−−→ W (A)
π−−−−→ Wl(A) −−−−→ 0,

is commutative. By using the snake lemma for this diagram, we have the exact sequence

0 −−−−→ W (A)F
(λp

l
) Ta−−−−→ W (A)F

(λ) π−−−−→ Wl(A)
F (λ)

∂−−−−→ W (A)/F (λpl ) Ta−−−−→ W (A)/F (λ) π−−−−→ Wl(A)/F
(λ) −−−−→ 0.

(6)

Now, by combining the exact sequences (3), (6) and the isomorphisms (4), (5), we have the

following diagram consisting of exact horizontal lines and vertical isomorphisms except φ:

Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−−−→ Hom(Nl, Ĝm,A)

ϕ1

� ϕ2

� ϕ

�

W (A)F
(λp

l
) Ta−−−−→ W (A)F

(λ) π−−−−→ Wl(A)
F (λ)

∂−−−−→ H2
0 (Ĝ(λpl ), Ĝm,A)

(ψ(l))∗−−−−→ H2
0 (Ĝ(λ), Ĝm,A)

ϕ3

� ϕ4

�
∂−−−−→ W (A)/F (λpl ) Ta−−−−→ W (A)/F (λ),

(7)

where Wl(A)
F (λ)

:= Ker[F (λ) : Wl(A) → Wl(A)] and φ is the following homomorphism induced

from the exact sequence (2) and the isomorphism (4):

φ : Wl(A)
F (λ) → Hom(Nl, Ĝm,A); x �→ Ep(x , λ;x, y) := Ep(x , λ;x, y).

The well-definedness of φ has already been shown in [1, Lemma 1, p.123]. Moreover it has already

been proved in [1, Section 4] that φ is an isomorphism. Hence (7) is a commutative diagram
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where W̃A/Ta is the fppf-sheafification of WA/Ta . Since WA is a quasi-coherent sheaf, the coho-

mology is trivial. This shows

W̃A/Ta(B) � WA(B)/Ta(B) = Wl,A(B).

We consider the diagram

W (A)
π−−−−→ Wl(A)

F (λ)

�
�F (λ)

W (A)
π−−−−→ Wl(A),

where π is a natural projection and F (λ) is defined by F (λ)(x ) := F (λ)(x ). Then the homomorphism

F (λ) is well-defined and the above diagram is commutative, since F (λ) ◦ Ta(x ) = Ta ◦F (λpl )(x ) for

x ∈ W (A). Note that Ta = V l holds under the assumption that A is an Fp-algebra. Hence the

following diagram

0 −−−−→ W (A)
Ta−−−−→ W (A)

π−−−−→ Wl(A) −−−−→ 0

F (λp
l
)

� F (λ)

� F (λ)

�
0 −−−−→ W (A)

Ta−−−−→ W (A)
π−−−−→ Wl(A) −−−−→ 0,

is commutative. By using the snake lemma for this diagram, we have the exact sequence

0 −−−−→ W (A)F
(λp

l
) Ta−−−−→ W (A)F

(λ) π−−−−→ Wl(A)
F (λ)

∂−−−−→ W (A)/F (λpl ) Ta−−−−→ W (A)/F (λ) π−−−−→ Wl(A)/F
(λ) −−−−→ 0.

(6)

Now, by combining the exact sequences (3), (6) and the isomorphisms (4), (5), we have the

following diagram consisting of exact horizontal lines and vertical isomorphisms except φ:
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consisting of exact horizontal lines and vertical isomorphisms. Therefore (ι)∗ to be surjective and

π to be surjective are equivalent. Then, if

π : W (A)F
(λ) → Wl(A)

F (λ)
; x �→ π(x ) = x(8)

is shown to be surjective, Theorem 1 is proved.

Proposition 1. The homomorphism (8) is surjective.

Proof Take any x ∈ Wl(A)
F (λ)

. This means F (λ)(x ) ∈ Im(Ta)(A). Then there exists z ∈
W (A) such that F (λ)(x ) = Ta(z ). Put w := F (λ)(x ) = Ta(z ), where w = (w0, w1, . . .) ∈ W (A).

We can calculate w ∈ W (A) by using the phantom map. In our case, since Ta = V l, the equalities

w0 = w1 = · · · = wl−1 = 0

holds. Set x := (x0, x1, . . .) ∈ W (A). For Φ0(w) = Φ0(F
(λ)(x )), we have the equality

xp0 − λp−1x0 ≡ 0 (mod p).

Inductively,

xp
i+1

i − λpi(p−1)xp
i

i ≡ 0 (mod p)(9)

are obtained for 0 ≤ i ≤ l − 1. Next, Φl(w) = Φl(F
(λ)(x )) means

wpl

0 + pwpl−1

1 + · · ·+ plwl

=
(
xp

l+1

0 + pxp
l

1 + · · ·+ plxpl + pl+1xl+1

)
− λpl(p−1)

(
xp

l

0 + pxp
l−1

1 + · · ·+ plxl

)
.

This leads to

wl =
1

pl

(
xp

l+1

0 − λpl(p−1)xp
l

0

)
+

1

pl−1

(
xp

l

1 − λpl(p−1)xp
l−1

1

)
+ · · ·+

(
xpl − λpl(p−1)xl

)
+ pxl+1

≡ xpl − λpl(p−1)xl (mod p)

by using the equalities (9). Inductively, we obtain

wl+k = xp
k+1

l+k − λpl+k(p−1)xp
k

l+k (mod p)

for any integer k ≥ 0. These imply that w = Ta ◦F (λpl )(x l), where x l = (xl, xl+1, . . .). Then, since

w = Ta ◦ F (λpl )(x l) = F (λ) ◦ Ta(x l) = F (λ)(x ),

F (λ)(Ta(x l)− x ) = 0 holds. Therefore we have Ta(x l)− x ∈ W (A)F
(λ)

such that

π(Ta(x l)− x ) = x ∈ Wl(A)
F (λ)

.

This means that (8) is surjective. �

acknowledgements

He is grateful to Professor Shin-ichi Tsukada and Professor Shigeki Kitajima for various supports

and warm encouragements. And he should express hearty thanks to people of Meisei university for

hospitality.

7



AN EXACT SEQUENCE INDUCED BY THE GROUP SCHEME DEFORMING Ga TO Gm

−7−
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