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Abstract

We develop the notions of duality and anti-duality for axiomatic analysis
of allocation rules. First, we show basic properties of duality and anti-duality
for allocation rules. Next, using the notion of duality and axioms involved
in axiomatizations of the Shapley rule for airport problems, we axiomatize
the Shapley rule for bidding ring problems. Finally, using the notion of anti-
duality and axioms involved in axiomatizations of the nucleolus for airport
problems, we axiomatize the nucleolus rule for bidding ring problems. From
the approach proposed, we may derive appropriate interpretations of axioms
involved in axiomatizations of economic rules.
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JEL classi�cation: C69, C71

1 Introduction

�Claims problems� are well-known allocation problems in economics. They
deal with the situation where the liquidation value of a bankrupt �rm has
to be allocated between its creditors, but there is not enough to honor the
claims of all creditors. The problem is to determine how the creditors should
share the liquidation value (O�Neill 1982; Thomson 2003, for a survey of the
literature). In claims problems, Thomson and Yeh (2008) introduce operators
on the space of division rules and uncover the underlying structure of the
space of division rules. The notion of �duality� plays an important role in
their analysis. For each claims problem, this notion gives us its dual problem.
Intuitively speaking, the dual of a claims problem is to determine how the
creditors should abandon some part of their claims. Also, the notion of duality
is applied to division rules: Given a division rule for claims problems, its dual
rule is the same division rule for their dual problems. A division rule is said
to be �self-dual�, if the outcome chosen by this division rule and the outcome
chosen by its dual rule always coincide with each other.
Analogously to claims problems, one can de�ne �dual solutions�and �self-

dual solutions� in cooperative game theory. Intuitively speaking, given a so-
lution for coalitional games with transferable utility (TU games, for short),
its dual solution is de�ned as the same solution for the dual games.1 A solu-
tion is said to be �self-dual�, if the outcome chosen by this solution and the
outcome chosen by its dual solution always coincide with each other. These
concepts can help us to uncover a hidden structure of solutions, axioms, and

1The notion of �dual games�is well known in the literature on cooperative game theory.
The de�nition of dual games and their interpretation are stated in Section 2.
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axiomatizations on the domain of all TU games (Funaki 1998). Analogously
to the notions of dual solutions and self-dual solutions, one can also de�ne the
notions of �anti-dual solutions�and �self-anti-dual solutions� in cooperative
game theory (Oishi and Nakayama 2009; Oishi et al. 2016).2 Oishi et al.
(2015) uncover another hidden structure of solutions, axioms, and axiomati-
zations on several classes of TU games. However, the potential of the notions
of duality and anti-duality to economic analysis has not been developed.
The purpose of this paper is to propose an analytical framework for axiom-

atizations of allocation rules for economic problems. Toward this purpose, we
develop the uni�ed approach of duality and anti-duality for axiomatic analysis
of allocation rules. This new approach enables us to derive axiomatizations of
allocation rules for some economic problems, which have not been analyzed in
the existing literature, and to uncover a hidden relationship between distinct
rules.
The framework proposed has the following advantages: Axiomatizations of

allocation rules depend on economic problems under investigation. So, axiom-
atizations of an allocation rule for economic problems cannot be derived from
those of the same rule for other problems. On the other hand, we o¤er a general
linkage, �duality�and �anti-duality�relations, between axioms involved in ax-
iomatizations of allocation rules for economic problems. Thanks to the duality
and anti-duality relations, we can derive axiomatizations of an allocation rule
for some economic problems from those of the same rule for other problems.
Thus, an axiomatization of allocation rules for some problems, which has not
been analyzed in the existing literature, is possible automatically.
First, we show basic properties of (anti-)dual axioms and of (anti-)dual

axiomatizations of allocation rules. That is, we verify that an axiom for the
(anti-)dual of a rule can be derived from taking the (anti-)dual of an axiom for
the original rule. We also verify that the (anti-)dual of a rule can be axioma-
tized by taking the (anti-)dual of the axioms involved in an axiomatization of
the original rule.
Next, we apply the notion of duality to �airport problems�, and �bidding

ring problems�. One can apply the notion of anti-duality to these problems,
and then one can obtain the same result derived from the duality approach. For
simplicity of our analysis, we take the duality approach. Airport problems are
cost sharing problems of an airstrip among airlines (Littlechild and Owen 1973;
Thomson 2007, for a survey of the literature). A bidding ring problem (Graham
et al. 1990) describes the situation where bidders form a ring in a single-object
English auction. The ring reduces or eliminates buyer competition, thereby
securing an advantage over the seller. The problem forced by the members of
the ring is to share the bene�t of their strategy.

2The de�nition of anti-dual games, anti-dual solutions and self-anti-dual solutions is
stated in Section 2.
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The �Shapley rule� is a mapping on some domain of allocation problems
that associates with each problem in the domain the �Shapley value�of the
corresponding TU game. The Shapley value (Shapley 1953) is the most im-
portant single-valued solution of TU games with economic applications. For
instance, Chun et al. (2012) axiomatize the Shapley rule for airport problems.
Considering these axioms in a duality relation, it is shown that one can easily
axiomatize the Shapley rule for bidding ring problems. These axioms are self-
duals to those appearing in Chun et al. (2012), and an interpretation of the
axioms is possible in the almost same manner as in Chun et al. (2012).
Finally, we apply the notion of anti-duality to analysis of the �nucleolus

rules�for bidding ring problems. The nucleolus rule is a mapping on some do-
main of allocation problems that associates with each problem in the domain
the �nucleolus� of the corresponding TU game. The nucleolus (Schmeidler
1969) is another important single-valued solution of TU games with economic
applications. For instance, Hwang and Yeh (2012) axiomatize the nucleolus
for airport problems. Considering these axioms in an anti-duality relation, it is
shown that one can easily axiomatize the nucleolus for bidding ring problems.
These axioms are self-anti-duals to those appearing in Hwang and Yeh (2012).
However, a consistency property referred to as �bidding-ring consistency�ax-
iom can be interpreted in a di¤erent way since it is obtained as a quietly
di¤erent form from �airport consistency�appearing in Hwang and Yeh (2012).
Thus, from the approach proposed, we may derive appropriate interpretations
of axioms involved in axiomatizations of economic rules.
The rest of this paper is organized as follows. In Section 2, we explain the

notions of duality and anti-duality for cooperative game theory. In Section
3, we introduce the notions of duality and anti-duality for allocation rules,
and show basic properties of these notions. In Section 4, using duality, we
axiomatize the Shapley rule for bidding ring problems. In Section 5, using
anti-duality,we axiomatize the nucleolus rule for bidding ring problems.

2 Preliminaries

There is a universe of potential agents, denoted I �N, where N is the set of
natural numbers.3 Let N be the class of non-empty and �nite subsets of I,
and N 2 N . A coalitional game with transferable utility for N (a TU
game for N , for short) is a function v : 2N ! R with v(;) = 0. A set S 2 2N
is called a coalition. As far as there is no confusion, we sometimes denote by
i instead of fig a singleton. For all S 2 2N , v(S) represents what coalition
S can achieve on its own. Let VN be the class of TU games for N , and
V �

S
N2N VN .

3We use � for weak set inclusion, and � for strict set inclusion.

4



Let RN denote the Cartesian product of jN j copies of R, indexed by the
members of N . A payo¤vector for N is an element x of RN . For all x 2 RN
and all S 2 2N , let xS = (xi)i2S.
A solution, denoted ', is a mapping de�ned on some domain of games

that associates with each game in the domain a non-empty set of payo¤vectors.
A solution is single-valued if it associates with each game in its domain a
unique payo¤ vector.
Given a game v for N , the dual of v, denoted vd, is de�ned by setting,

for all S � N ,
vd(S) � v(N)� v(NnS):

The number vd(S) is the amount that the complementary coalitionNnS cannot
prevent S from obtaining.
Let V be a class of games such that if v 2 V, then vd 2 V. Given a solution

' on V, the dual of ', denoted 'd, is de�ned by setting, for all v 2 V,

'd(v) � '(vd):

A solution ' on V is self-dual if for all v 2 V, '(v) = 'd(v).
An axiom of a solution is a property that should be satis�ed by the solu-

tion. Two axioms are dual to each other if whenever a solution satis�es
one of them, the dual of this solution satis�es the other. That is, two axioms
A and A�are dual to each other if for all solutions that satisfy A, it holds that
their duals satisfy A�, and conversely, for all solutions that satisfy A�, it holds
that their duals satisfy A. An axiom is self-dual if it is its own dual.
Given a game v for N , the anti-dual of v, denoted vad, is de�ned by

setting, for all S � N ,
vad(S) � �vd(S):

Let V be a class of games such that if v 2 V, then vad 2 V. Given a solution
' on V, the anti-dual of ', denoted 'ad, is de�ned by setting, for all v 2 V,

'ad(v) � �'(vad):

A solution ' on V is self-anti-dual if for all v 2 V, '(v) = 'ad(v). Two
axioms are anti-dual to each other if whenever a solution satis�es one of
them, the anti-dual of this solution satis�es the other. That is, two axioms A
and A�are anti-dual to each other if for all solutions that satisfy A, it holds
that their anti-duals satisfy A�, and conversely, for all solutions that satisfy
A�, it holds that their anti-duals satisfy A. An axiom is self-anti-dual if it
is its own anti-dual.
In Figure 1, the horizontal arrows show the opposite-sign relation. For

instance, vad is vd with the opposite sign. In the left picture, the vertical
arrow shows the duality relation. For instance, vd is dual of v, and v is dual of
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Figure 1: Left: duality relation between dual and anti-dual games. Right:
anti-duality relation between dual and anti-dual games.

vd. Similarly, vad is dual of �v, and �v is dual of vad. In the right picture, the
vertical arrow shows the anti-duality relation. For instance, vad is anti-dual
of v, and v is anti-dual of vad. Similarly, vd is anti-dual of �v, and �v is
anti-dual of vd.
Finally, we introduce well-known single-valued solutions for TU games.

The Shapley value (Shapley 1953) is de�ned as follows: for all N 2 N , all
v 2 VN , and all i 2 N ,

Shi(v) �
X
S�N
S 63i

jSj!(jN j � jSj � 1)!
jN j!

�
v(S [ fig)� v(S)

�
:

Given N 2 N and v 2 VN , let I(v) be the set of vectors x 2 RN such that
for all i 2 N , xi � v(fig), and

P
N xi = v(N). Let VN be a class of games such

that for all v 2 VN , I(v) 6= ;. For all x 2 I(v), let e(v; x) 2 R2N be de�ned by
setting, for all S � N , eS(v; x) � v(S)�

P
S xi. For all z 2 R2

N
, �(z) 2 R2N

is de�ned by rearranging the coordinates of z in non-increasing order. For
all z 2 R2N , z is lexicographically smaller than z0 if �1(z) < �1(z

0) or
[�1(z) = �1(z

0) and �2(z) < �2(z
0)] or [�1(z) = �1(z

0) and �2(z) = �2(z
0) and

�3(z) < �3(z
0)], and so on. The nucleolus (Schmeidler 1969) is de�ned as

follows:

Nu(v) �
n
x 2 I(v)

��� For all y 2 I(v)nfxg, e(v; x) is
lexicographically smaller than e(v; y)

o
:

The nucleolus is a single-valued solution.
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3 Duality and anti-duality for allocation rules,
and their basic properties

In this section, we introduce the notions of duality and anti-duality for allo-
cation rules. We also show properties of (anti-)dual axioms and of (anti-)dual
axiomatizations of allocation rules.

3.1 Duality and anti-duality for allocation rules

An allocation problem for N is a pair (N; p), where N 2 N is a �nite non-
empty set of agents and p = (pi)i2N is a pro�le of parameters for N . For each
i 2 N , the parameter pi is the bene�t or the cost experienced by agent i 2 N
when engaging in some economic activity. Let P be the set of all allocation
problems on N .
Given all S 2 2N , we denote by vP : P ! R2N a mapping that associates

with each allocation problem (N; p) in the domain the unique 2jN j-dimensional
vector whose S-component is the amount coalition S can obtain on its own. By
convention, vP (N; p)(;) = 0. The number vP (N; p) is the coalitional game
for N derived from the allocation problem (N; p).
Let VP be the class of all coalitional games derived from allocation prob-

lems P. Given (N; p) 2 P, an allocation for (N; p) is a vector x 2 RN such
that

P
N xi = vP (N; p)(N). Let X(N; p) be the set of allocations for (N; p).

A solution for coalitional games is a mapping � : VP ! RN that asso-
ciates with each coalitional game vP (N; p) in the domain a unique allocation
in X(N; p). We refer to the composite mapping ' � � � vP as an allocation
rule, or simply a rule, for allocation problems on the domain of P .
For instance, we refer to the composite mapping ' � Sh � vP as the Shapley
rule, and to the composite mapping ' � Nu � vP as the nucleolus rule.
Given a rule ' on P, the dual of ', denoted 'd, is de�ned by setting,

for all (N; p) 2 P,
'd(N; p) � �[(vdP )(N; p)]:

A rule ' on P is self-dual if for all (N; p) 2 P, '(N; p) = 'd(N; p). Two
axioms are dual to each other if whenever a rule satis�es one of them, the
dual of this rule satis�es the other. That is, two axioms A and A�are dual to
each other if for all rules that satisfy A, it holds that their duals satisfy A�,
and conversely, for all rules that satisfy A�, it holds that their duals satisfy A.
An axiom is self-dual if it is its own dual.
Given a rule ' on P, the anti-dual of ', denoted 'ad, is de�ned by

setting, for all (N; p) 2 P,

'ad(N; p) � ��[(vadP )(N; p)]:
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A rule ' on P is self-anti-dual if for all (N; p) 2 P, '(N; p) = 'ad(N; p).
Two axioms are anti-dual if whenever a rule satis�es one of them, the anti-
dual of this rule satis�es the other. That is, two axioms A and A�are anti-dual
to each other if for all rules that satisfy A, it holds that their anti-duals satisfy
A�, and conversely, for all rules that satisfy A�, it holds that their anti-duals
satisfy A. An axiom is self-anti-dual if it is its own anti-dual.

3.2 Basic properties of (anti-)dual axioms for rules

3.2.1 Propositional functions, axioms, and axiomatizations

We show basic properties of duality and anti-duality for rules. In order to show
these properties, we introduce the mathematical structure which explicitly
deals with (anti-)dual axioms for rules for allocation problems. The basic idea
of this mathematical structure steams from Funaki (1998). The mathematical
structure proposed by Funaki (1998) deals with dual axioms for solutions for
TU games, not (anti-)dual axioms for rules for allocation problems.
First, we introduce the mathematical structure for dual axioms for alloca-

tion rules using the notations appearing in the subsection 3.1.
Given a class P, a class VP and a solution � on VP , a propositional

function F is generically de�ned as follows:

F : f((N; p); '(N; p)) : (N; p) 2 P, '(N; p) 2 X(N; p)g ! f0; 1g,

where '(N; p) � � � vP (N; p) for all (N; p) 2 P and all vP 2 VP . We say that
the propositional function F with respect to (N; p) and ' is true (resp. false)
if F ((N; p); '(N; p)) = 1 (resp. F (�; �) = 0).
Let F be the set of all propositional functions. Given a class P, a class

VP and a solution � on VP , an equivalence relation �' on F is de�ned as
follows:

F �' �F , F ((N; p); '(N; p)) = �F ((N; p); '(N; p)) for all (N; p) 2 P :

Given a propositional function �F 2 F on P, an axiom for a rule ' with
respect to �F is de�ned by setting, for all (N; p) 2 P,

E �F (P ; ') � fF : F �' �Fg:

A rule ' satis�es the axiom E �F (P ; ') with respect to �F if for all (N; p) 2
P, and all F 2 E �F (P ; '), F ((N; p); '(N; p)) = 1.
On P, a rule ' is axiomatized by the set of axioms if the rule '

satis�es a set of axioms with respect to some propositional functions and any
other solutions do not satisfy it.
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3.2.2 Dual axioms, and dual axiomatizations

Given a class P, a class VP , a solution � on VP , and a propositional function
F 2 F , the dual of F , denoted F d, is de�ned by setting, for all (N; p) 2 P,

F d((N; p); '(N; p)) � F ((N; p); 'd(N; p));

where 'd(N; p) = � � vdP (N; p) for all (N; p) 2 P and all vP 2 VP .

Given a propositional function �F 2 F , a dual axiom for a rule ' with
respect to �F , denoted Ed�F (P ; '), is de�ned by setting, for all (N; p) 2 P,

Ed�F (P ; ') � E �F d(P ; '):

The following theorem shows that one can derive an axiom for the dual of
a rule from taking the dual of an axiom for the original rule.

Theorem 1 (Existence Theorem of dual axioms for rules) Given a class P,
a class VP , a solution � on VP , and a propositional function F 2 F , a rule '
satis�es an axiom EF (P ; ') if and only if the dual rule 'd satis�es the dual
axiom EdF (P ; 'd).

Proof. Let 'd be a rule satisfying an axiom EdF (P ; 'd), that is, for all (N; p) 2
P and all G 2 EdF (P ; 'd);

G((N; p); 'd(N; p)) = 1:

By the duality of propositional functions,

EdF (P ; 'd)
= fG : G((N; p); 'd(N; p)) = F d((N; p); 'd(N; p)) for all (N; p) 2 Pg
= fG : G((N; p); � � vd(N; p)) = F d((N; p); � � vd(N; p)) for all (N; p) 2 Pg
= fG : Gd((N; p); '(N; p)) = F ((N; p); '(N; p)) for all (N; p) 2 Pg
= fG : Gd 2 EF (P ; ')g:

Since G((N; p); 'd(N; p)) = 1, Gd((N; p); '(N; p)) = 1. Then, for all (N; p) 2
P and all Gd 2 EF (P ; '), Gd((N; p); '(N; p)) = 1, which implies that ' sat-
is�es an axiom EF (P ; '). By the same argument, we obtain the opposite
implication.

Next, the following theorem shows that one can axiomatize the dual of a
rule by taking the dual of the axioms involved in an axiomatization of the
original rule.
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Theorem 2 (Axiomatization Theorem for dual rules) Given a class P, a class
VP , a solution � on VP , and propositional functions Fl 2 F (l = 1; 2; � � � ; k),
if a rule ' on P is axiomatized by axioms EFl(P ; ') (l = 1; 2; � � � ; k), then the
dual rule 'd is axiomatized by the dual axioms EdFl(P ; '

d) (l = 1; 2; � � � ; k).
Proof. Let ' be a rule on P, satisfying EFl(P ; ') (l = 1; 2; � � � ; k). By
Theorem 1, 'd satis�es EdFl(P ; '

d) (l = 1; 2; � � � ; k). Suppose that ' is the
unique rule on P, satisfying EFl(P ; ') (l = 1; 2; � � � ; k), and ~' is any rule
on P, satisfying EdFl(P ; '

d) (l = 1; 2; � � � ; k). Since ~' = (~'d)d, (~'d)d satis�es
EdFl(P ; '

d) (l = 1; 2; � � � ; k). Again, by Theorem 1, ~'d satis�es EFl(P ; ')
(l = 1; 2; � � � ; k). Hence, ~'d = ', or equivalently, ~' = 'd, which implies that
~' is unique.

3.2.3 Anti-dual axioms, and anti-dual axiomatizations

As in the case of dual axioms for rules, we introduce the mathematical structure
of anti-dual axioms for rules.
Given a class P, a class VP , a solution � on VP , and a propositional function

F 2 F , the anti-dual of F , denoted F ad, is de�ned by setting, for all (N; p) 2
P,

F ad((N; p); '(N; p)) � F ((N; p); 'ad(N; p));
where 'ad(N; p) = �� � vadP (N; p) for all (N; p) 2 P and all vP 2 VP .
Given a propositional function �F 2 F , an anti-dual axiom for a rule '

with respect to �F , denoted Ead�F (P ; '), is de�ned by setting, for all (N; p) 2
P,

Ead�F (P ; ') � E �Fad(P ; '):

The following theorem is the anti-dual version of Theorem 1. The proof is
the same as that of Theorem 1. We omit it.

Theorem 3 (Existence Theorem of anti-dual axioms for rules) Given a class
P, a class VP , a solution � on VP , and a propositional function F 2 F , a rule
' satis�es an axiom EF (P ; ') if and only if the anti-dual rule 'ad satis�es the
anti-dual axiom EadF (P ; 'ad).

Next, the following theorem is the anti-dual version of Theorem 2. The
proof is the same as that of Theorem 2. We omit it.

Theorem 4 (Axiomatization Theorem for anti-dual rules) Given a class P,
a class VP , a solution � on VP , and propositional functions Fl 2 F (l =
1; 2; � � � ; k), if a rule ' on P is axiomatized by axioms EFl(P ; ') (l = 1; 2; � � � ; k),
then the anti-dual rule 'ad is axiomatized by the anti-dual axioms EadFl (P ; '

ad)
(l = 1; 2; � � � ; k).
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An economic application of Theorem 2 is as follows: Suppose that we have
an axiomatization of rule ' for allocation problems and its dual is rule 'd

for distinct allocation problems. Suppose that in the existing literature no
axiomatization of rule 'd is investigated. Then just by identifying the dual of
each axiom involved in axiomatization of rule ', we obtain an axiomatization
of rule 'd. An economic application of Theorem 4 is the same as in the case
of Theorem 2.

In the following sections, we show examples of these applications mentioned
above.

4 Duality and anti-duality approach to analy-
sis of allocation problems

In this section, by using the notion of duality, we axiomatize the Shapley rule
for bidding ring problems. Notice that one can axiomatize the Shapley rule for
the problems by using the notion of anti-duality. For simplicity of our analysis,
we take the duality approach here.

4.1 Airport problems, and bidding ring problems

There is a set of airlines for whom an airstrip they will jointly use is to be
built. Each airline owns one type of aircraft. Airlines have di¤erent needs
for airstrips, since they own di¤erent types of aircraft. An airstrip needed to
accommodate the largest aircraft is to be built. The problem is to determine
how to share the cost of the airstrip between the airlines (Littlechild and Owen
1973).
An airport problem is a pair (N; c), where N 2 N is the set of airlines

and c = (ci)i2N is the pro�le of cost parameters, namely ci is the construction
cost of the airstrip for airline i. We assume that the cost is increasing in the
length of the airstrip. For simplicity, we assume that cn � cn�1 � � � � � c1 > 0.
Let C be the class of all airport problems on N .
Given (N; c) 2 C, the airport game is de�ned by setting, for all S � N ,

cA(N; c)(S) � max
i2S

ci.

For all S 2 2N , cA(N; c)(S) represents the cost of the airstrip needed to ac-
commodate the members of coalition S. It is equal to the cost of the airstrip
needed to accommodate the member of the coalition whose cost parameter is
the largest.
Let CA be the class of all airport games. Given (N; c) 2 C, an allocation

for (N; c) is a vector x 2 RN+ such that
P

N xi = maxN ci (which is equal to

11



cn). Let X(N; c) be the set of allocations for (N; c). A solution for airport
games is a mapping �A : CA ! RN that associates with each airport game
cA(N; c) in the domain an allocation in X(N; c). We refer to the composite
mapping 'A � �A � cA as a rule for airport problems. The Shapley rule
for airport problems is de�ned by 'ShA � Sh � cA. The nucleolus rule for
airport problems is de�ned by 'NuA � Nu � �cA, since airport problems are
cost problems and the nucleolus is de�ned under the situation of pro�t games.

An English auction is an oral auction in which an auctioneer initially
sets a bid at a seller�s reservation price and then gradually increases the price
until only one bidder remains active. There is a set of buyers in a single-
object English auction. There is no asymmetry of information between the
buyers; that is, each buyer has information on the valuations of all buyers
for the object. The valuation of each buyer is positive, and all valuations are
di¤erent. The reservation price is zero. A bidding ring is formed by all buyers.
The bidding ring wins the auction by making the buyer whose valuation is the
highest the sole bidder. The bene�t of the ring members�strategy is equal to
the valuation of this buyer. The problem for the members in the ring is to
determine how to share the bene�t of their strategy (Graham et al. 1990).
A bidding ring problem is a pair (N; c), whereN 2 N is the set of buyers

and c = (ci)i2N is the pro�le of valuations for a single object, ci being the
valuation of buyer i. For simplicity, we assume that cn � cn�1 � � � � � c1 > 0.
Let C be the class of all bidding ring problems on N .
Given (N; c) 2 C, the bidding ring game is de�ned by setting, for all

S � N ,

vB(N; c)(S) =

(
cn �maxj =2S cj if S 3 n
0 if S 63 n,

where maxj =2N cj � 0. The intuition is as follows: First, under the English
auction rule, it is a dominant strategy for each bidder to remain active until
bidding reaches his valuation. Second, any coalition including buyer n can win
the auction, and achieve the net bene�t cn�maxj =2S cj by making buyer n the
sole bidder in the coalition and his bidding cn. Finally, no coalition that does
not include buyer n wins the auction, and hence its net bene�t is 0.
Let VB be the class of all bidding ring games. Given (N; c) 2 C, an allo-

cation for (N; c) is a vector x 2 RN+ such that
P

N xi = cn. Let X(N; c) be
the set of allocations for (N; c) . A solution for bidding ring games is a
mapping �B : VB ! RN that associates with each bidding ring game vB(N; c)
in the domain an allocation in X(N; c). We refer to the composite mapping
'B � �B � vB as a rule for bidding ring problems. The Shapley rule for
bidding ring problems is de�ned by 'ShB � Sh � vB. The nucleolus rule
for bidding ring problems is de�ned by 'NuB � Nu � vB.
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Remark 1 The following assertions hold:
(i) The class CA of airport games and the class VB of bidding ring games

are dual.
(ii) The Shapley value of airport games on the domain CA coincides with

that of bidding ring games on the domain VB.
(iii) The nucleolus multiplied by -1 of airport games on the domain CA

coincides with that of bidding ring games on the domain VB.

4.2 Duality approach to bidding ring problems

In the existing literature, the Shapley rule for bidding ring problems has not
been axiomatized. Just by identifying the dual of each axiom involved in an
axiomatization of 'ShA , we obtain an axiomatization of '

Sh
B .

Let us consider the dual of each axiom involved in the axiomatization of
the Shapley rule for airport problems (Chun et al. 2012).

First, we consider the following property. Each airline i has the right to
use at least the airstrip to accommodate the airline i. It says that each airline
i should pay at least an equal share of ci.

Equal share lower bound for airport problems (ESL for airport prob-
lems): For all (N; c) 2 C and all i 2 N ,

'A[i](N; c) �
ci
n
:

The following property says that each buyer i 2 N should gain at least an
equal share of his valuation. It is self-dual.

Equal share lower bound for bidding ring problems (ESL for bidding
ring problems): For all (N; c) 2 C and all i 2 N ,

'B[i](N; c) �
ci
n
:

Next, we consider the following property for airport problems. It requires
that if the cost of an airline increases, then all the other airlines should pay at
most as much as they did initially.

Individual monotonicity for airport problems (IM for airport prob-
lems): Fix an arbitrary N 2 N . For all (N; c) 2 C, all (N; c0) 2 C, and all
i 2 N , if c0i > ci, and for all j 2 Nnfig, c0j = cj, then for all j 2 Nnfig,

'A[j](N; c
0) � 'A[j](N; c):

13



The following property says that if the valuation of a buyer increases, then
all the other buyers should share at most as much as they did initially. It is
self-dual.

Individual monotonicity for bidding ring problems (IM for bidding
ring problems): Fix an arbitrary N 2 N . For all (N; c) 2 C, all (N; c0) 2 C,
and all i 2 N , if c0i > ci, and for all j 2 Nnfig, c0j = cj, then for all j 2 Nnfig,

'B[j](N; c
0) � 'B[j](N; c):

Our �nal property for airport problems says that if a new airline arrives,
then all airlines whose costs are more than the cost of the new airline should
be a¤ected equally.

Population fairness for airport problems (PF for airport problems):
For all N 2 N , all (N; c) 2 C, all i 2 InN , all j; k 2 N such that minfcj; ckg >
ci,

'A[j](N [ fig; cN[fig)� 'A[j](N; c) = 'A[k](N [ fig; cN[fig)� 'A[k](N; c).

The following property says that if a new buyer arrives, then all buyers
whose evaluations are more than the valuation of the new buyer should be
a¤ected equally. It is self-dual.

Population fairness for bidding ring problems (PF for bidding ring
problems): For all N 2 N , all (N; c) 2 C, all i 2 InN , all j; k 2 N such that
minfcj; ckg > ci,

'B[j](N [ fig; cN[fig)� 'B[j](N; c) = 'B[k](N [ fig; cN[fig)� 'B[k](N; c).

Thus, we obtain the following axiomatization of solution 'ShB that is self-
dual of the axiomatization of solution 'ShA .

Theorem A (Chun et al. 2012) For airport problems, the Shapley rule is the
only rule satisfying the equal share lower bound, individual monotonicity, and
population fairness.

Theorem 5 (Self-dual of Theorem A) For bidding ring problems, the Shap-
ley rule is the only rule satisfying the equal share lower bound, individual
monotonicity, and population fairness.

Proof. We consider the following steps.

14



Step 1: ESL for bidding ring problems is the self-dual of ESL for airport
problems.
ESL for airport problems is expressed by

F ((N; c); Sh � cA(N; c)) = 1, [Sh � cA(N; c)]i �
cA(i)

n
:

Then, this formula can be rewritten by the formulas successively.

F ((N; c); Sh � (cdA)d(N; c)) = 1, [Sh � (cdA)d(N; c)]i �
(cdA)

d(i)

n
;

F ((N; c); Sh � (vB)d(N; c)) = 1, [Sh � (vB)d(N; c)]i �
(vB)

d(i)

n
;

F d((N; c); Sh � (vB)(N; c)) = 1, [Sh � (vB)d(N; c)]i �
(vB)

d(i)

n
;

where

(vB)
d(i) = vB(N)� vB(Nnfig)

= cn � (cn � ci)
= ci:

By the self duality that Sh � (vB)d(N; c) = Sh � (vB)(N; c);

F d((N; c); Sh � (vB)(N; c)) = 1, [Sh � (vB)(N; c)]i �
ci
n
;

a desired claim.
Step 2: IM for bidding ring problems is the self-dual of IM for airport

problems.
For all (N; c) 2 C, all (N; c0) 2 C, all i 2 N , and for all j 2 Nnfig, let

c0A(i) > cA(i), and c
0
A(j) = cA(j). IM for airport problems is expressed by

F ((N; c); Sh�cA(N; c)) = 1, 8j 2 Nnfig : [Sh�cA(N; c0)]j � [Sh�cA(N; c)]j

Then, this formula can be rewritten by the formulas successively.

F ((N; c); Sh � (cdA)d(N; c)) = 1, 8j 2 Nnfig : [Sh � (cdA)d(N; c0)]j � [Sh � (cdA)d(N; c)]j;
F ((N; c); Sh � (vB)d(N; c)) = 1, 8j 2 Nnfig : [Sh � (vB)d(N; c0)]j � [Sh � (vB)d(N; c)]j;
F d((N; c); Sh � (vB)(N; c)) = 1, 8j 2 Nnfig : [Sh � (vB)(N; c0)]j � [Sh � (vB)(N; c)]j:

For all (N; c) 2 C, all (N; c0) 2 C, all i 2 N , all j 2 Nnfig,

((c0A)
d)d(i) > (cdA)

d(i); ((c0A)
d)d(j) = (cdA)

d(j):
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This implies that for all (N; c) 2 C, all (N; c0) 2 C, all i 2 N , all j 2 Nnfig,

(v0B)
d(i) > (vB)

d(i); (v0B)
d(j) = (vB)

d(j);

which implies that c0i > ci and c
0
j = cj since (vB)

d(k) = ck for all k 2 N . Hence
we obtain the desired claim.
Step 3: PF for bidding ring problems is the self-dual of PF for airport

problems.
PF for airport problems is expressed by
F ((N; c); Sh � cA(N; c)) = 1 , for all N 2 N , all (N; c) 2 C, all i 2 InN ,

all j; k 2 N such that minfcA(j); cA(k)g > cA(i),

Sh�cA[j](N[fig; cN[fig)�Sh�cA[j](N; c) = Sh�cA[k](N[fig; cN[fig)�Sh�cA[k](N; c).

Then, this can be written by the formulas successively.

F ((N; c); Sh � (cdA)d(N; c)) = 1
, for all N 2 N , all (N; c) 2 C, all i 2 InN , all j; k 2 N such that

minf(cdA)d(j); (cdA)d(k)g > (cdA)d(i),

Sh�(cdA)d[j](N[fig; cN[fig)�Sh�(cdA)d[j](N; c) = Sh�(cdA)d[k](N[fig; cN[fig)�Sh�(cdA)d[k](N; c).

F ((N; c); Sh � (vB)d(N; c)) = 1
, for all N 2 N , all (N; c) 2 C, all i 2 InN , all j; k 2 N such that

minf(vB)d(j); (vB)d(k)g > (vB)d(i),

Sh�(vB)d[j](N[fig; cN[fig)�Sh�(vB)d[j](N; c) = Sh�(vB)d[k](N[fig; cN[fig)�Sh�(vB)d[k](N; c).

F d((N; c); Sh � (vB)(N; c)) = 1
, for all N 2 N , all (N; c) 2 C, all i 2 InN , all j; k 2 N such that

minfcj; ckg > ci,

Sh�(vB)[j](N[fig; cN[fig)�Sh�(vB)[j](N; c) = Sh�(vB)[k](N[fig; cN[fig)�Sh�(vB)[k]; (N; c),

a desired claim.
Step 4: By step1 to step 3 together with Theorem 2, we obtain the desired

theorem.

5 Anti-duality approach to bidding ring prob-
lems

In the existing literature, the nucleolus rule for bidding ring problems has not
been axiomatized. Just by identifying the anti-dual of each axiom involved in
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an axiomatization of 'NuA , we obtain an axiomatization of 'NuB .
Let us consider the anti-dual of each axiom involved in the axiomatization

of the nucleolus rule for airport problems (Hwang and Yeh 2012).
First, we consider the following property. It says that airlines with equal

costs should contribute equal amounts.

Equal treatment of equals for airport problems (ETE for airport
problems): For each (N; c) 2 C and each pair fi; jg � N , if ci = cj, then
'Ai (N; c) = '

A
j (N; c):

The anti-dual of this axioms is self-anti-dual. Since the proof is the same
way as in Theorem 5, we omit it. This property say that buyers with equal
valuations should gain equal amounts.

Equal treatment of equals for bidding ring problems (ETE for bid-
ding ring problems): For each (N; c) 2 C and each pair fi; jg � N , if ci = cj,
then 'Bi (N; c) = '

B
j (N; c):

Next we consider the following property. It says that if the cost of an airline
with the highest cost increases by �, then all other airlines should contribute
the same amounts as they did initially.

Last-agent additivity for airport problems (Last-agent add for air-
port problems): For each pair f(N; c); (N; c0)g of elements of C and each
� 2 R+, if c0n = cn + � and for each j 2 Nnfng c0j = cj, then 'An (N; c

0) =
'An (N; c) + � and for each j 2 Nnfng, 'Aj (N; c0) = 'Aj (N; c):

The anti-dual of this axioms is self-anti-dual. Since the proof is the same
way as in Theorem 5, we omit it. This property says that if the valuation of a
buyer with the highest valuation increases by �, then all other buyers should
gain the same amounts as they did initially.

Last-agent additivity for bidding ring problems (Last-agent add for
bidding ring problems): For each pair f(N; c); (N; c0)g of elements of C
and each � 2 R+, if c0n = cn + � and for each j 2 Nnfng c0j = cj, then
'Bn (N; c

0) = 'Bn (N; c) + � and for each j 2 Nnfng, 'Bj (N; c0) = 'Bj (N; c):

Finally, we consider the following property. Imagine that airline i pays its
contribution xi and leaves. The remaining airlines�costs are revised as follows:
(i) for each airline j whose cost is lower than airline i�s cost, its revised cost is
the minimum of cj and ci � xi, and (ii) for each airline j whose cost is higher
than airline i�s cost, its revised cost is cj � xi. Thus, the reduced problem
consists of the set of the remaining airlines and the cost parameters revised.
For the details of a justi�cation of the reduced problem, see Hwang and Yeh
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(2012). The airport consistency says that for the reduced problem the outcome
chosen by a rule should be invariant. Using the propositional functions, we
state the property as follows.

Airport consistency: For all (N; c) 2 C with n � 2, F ((N; c); Nu �
�cA(N; c)) = 1 i¤ for all i 2 N and x = Nu � �cA(N; c),

(Nnfig; cxNnfig) 2 C and xNnfig = Nu � �cxNnfig;
where

(i) (cxNnfig)[j] = min fcj; ci � xig for each j 2 Nnfig such that j < i;
(ii) (cxNnfig)[j] = cj � xi for each j 2 Nnfig such that j > i:

Notice that the cost parameters revised are derived from �Davis-Maschler
consistency� (Davis and Maschler 1965). In fact, thanks to Davis-Maschler
consistency, for each j 2 Nnfig, we can set the cost parameter revised (cxNnfig)[j]
as (cxNnfig)(j) such that

(cxNnfig)(j) = min
Q�fig

[cA(fj [Qg)� x(Q)]

=

(
minfcj; ci � xig if j < i

cj � xi otherwise.

We consider the anti-dual of airport consistency. For notational conve-
nience, let N 0 � Nnfig. By Theorem 4, the formula of the airport consistency
can be written by the formulas (1), (2), and (3), successively.

(1) For all (N; c) 2 C with n � 2, F ((N; c); Nu��cA(N; c)) = 1 i¤ for all i 2 N
and x = Nu � �cA(N; c); (N 0; fcxA;N 0(j)gj2N 0) 2 C and xN 0 = Nu � �cxA;N 0 :

(2) For all (N; c) 2 C with n � 2, F ((N; c);�Nu � (�vB)ad(N; c)) = 1 i¤ for
all i 2 N and x = �Nu � (�vB)ad(N; c); (N 0; f((�vB)�xN 0 )ad(j)gj2N 0) 2 C and
�xN 0 = �Nu � ((�vB)�xN 0 )ad:

(3) For all (N; c) 2 C with n � 2, F ad((N; c); Nu � vB(N; c)) = 1 i¤ for all
i 2 N and x = Nu � vB(N; c); (N 0; fvB;xN 0(j)gj2N 0) 2 C and xN 0 = Nu � vB;xN 0 :

We must compute the value of ((�vB)�xN 0 )ad(j). First, for each S ( N 0 the
number of (cxN 0)(S) is given by

(cxN 0)(S) = min
Q�fig

[cA(S [Q)� x(Q)] = min
Q�fig

[cdA(S [Q)� x(Q)]

= min
Q�fig

[vB(S [Q)� x(Q)]

18



Then, for each S ( N 0 the number of (�vB)�xN 0 (S) is given by

(�vB)�xN 0 (S) = min
Q�fig

[�vB(S [Q) + x(Q)]

= min
Q�fig

�
�(cn � max

k2Nn(S[Q)
ck) + x(Q)

�
= � max

Q�fig

�
cn � max

k2Nn(S[Q)
ck � x(Q)

�
;

since Davis-Maschler reduces games are self-anti-duals (Oishi et al. 2016).
For each S ( N 0, let w(S) � ((�vB)�xN 0 )ad(S). We have that w(N 0) = cn�xi

and for each j 2 N 0

w(N 0nfjg) = � max
Q�fig

�
cn � max

k2Nn((N 0nj)[Q)
ck � x(Q)

�
= �maxfcn � cj � xi; cn �maxfci; cjgg:

For each j 2 N 0, since ((�vB)�xN 0 )ad(j) = �w(N 0) + w(N 0nfjg),

((�vB)�xN 0 )
ad(j) = (cn � xi)�maxfcn � cj � xi; cn �maxfci; cjgg;

which reduces to

((�vB)�xN 0 )
ad(j) =

(
minfcj; ci � xig if j < i

cj � xi otherwise.

Thanks to the approach proposed, we emphasize that an appropriate inter-
pretation of a consistency property in the context of bidding ring problems is
possible although the airport consistency is self-anti-dual. Again, let consider
the valuation revised (cn� xi)�maxfcn� cj � xi; cn�maxfci; cjgg. First, we
can regard the valuation of each buyer as his contribution to the grand bidding
ring N . The number of cn�xi is the bene�t of N 0 when N 0 pays xi to buyer i as
a reward for his cooperation. The number of maxfcn�cj�xi; cn�maxfci; cjgg
is the possibly highest bene�t of N 0nfjg when buyer j competes with the mem-
bers of a bidding ring N 0nfjg. Under this situation, we take into consideration
that for the bidding ringN 0 buyer i behaves cooperatively or non-cooperatively.
Therefore, the valuation revised is interpreted as �buyer j�s contribution to the
bidding ring N 0�. As a result, we obtain the following interpretation. Imagine
that the grand bidding ring N pays xi to buyer i as a reward for his coop-
eration, and buyer i leaves. The remaining buyers�contributions are revised
as contributions to the bidding ring N 0. Thus, the reduced problem consists
of the set of the remaining buyers and the contribution parameters revised.
The bidding ring consistency says that for the reduced problem the outcome
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chosen by a rule should be invariant.

Bidding ring consistency: For all (N; c) 2 C with n � 2, F ((N; c); Nu �
vB(N; c)) = 1 i¤ for all i 2 N and x = Nu � vB(N; c),

(Nnfig; rxNnfig) 2 C and xNnfig = Nu � vB(Nnfig; rxNnfig);
where for each j 2 Nnfig (rxNnfig)[j] = (cn � xi) � maxfcn � cj � xi; cn �
maxfci; cjgg:

In summary, we obtain an axiomatization of the nucleolus rule for bidding
ring problems.

Theorem B (Hwang and Yeh 2012) For airport problems, the nucleolus rule
is the only rule satisfying equal treatment of equals, last-agent additivity, and
airport consistency.

Theorem 6 (Self-dual of Theorem B, but a di¤erent form) For bidding ring
problems, the nucleolus rule is the only rule satisfying equal treatment of equals,
last-agent additivity, and bidding ring consistency.
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